Skewness coefficients of total expression distributions across six datasets before imputation, after data transformation, and after imputation.

<p>Skewness coefficients of total expression distributions across six datasets before imputation, after data transformation, and after imputation.</p>

Saved in:
Bibliographic Details
Main Author: Siyi Huang (8562174) (author)
Other Authors: Linfeng Jiang (2416375) (author), Ming Yi (15051) (author), Yuan Zhu (148570) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852014361839665152
author Siyi Huang (8562174)
author2 Linfeng Jiang (2416375)
Ming Yi (15051)
Yuan Zhu (148570)
author2_role author
author
author
author_facet Siyi Huang (8562174)
Linfeng Jiang (2416375)
Ming Yi (15051)
Yuan Zhu (148570)
author_role author
dc.creator.none.fl_str_mv Siyi Huang (8562174)
Linfeng Jiang (2416375)
Ming Yi (15051)
Yuan Zhu (148570)
dc.date.none.fl_str_mv 2025-12-01T18:50:32Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1013744.s033
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Skewness_coefficients_of_total_expression_distributions_across_six_datasets_before_imputation_after_data_transformation_and_after_imputation_/30756043
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Genetics
Molecular Biology
Plant Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> single
uses bulk rna
recovers expression values
providing clear guidelines
including cell clustering
false measurements caused
extensive practical evaluation
essential downstream analyses
differential expression detection
cell rna sequencing
cell &# 8217
three key innovations
guided imputation engine
distort biological signals
aware normalization step
d3impute demonstrates consistent
accurately identify non
true biological zeros
seq data analysis
biological zeros
true transcriptome
key hurdle
guide imputation
biological reference
aware modeling
aware discrimination
seq data
inflated data
data recovery
trajectory inference
technical limitations
specific characteristics
significant improvements
oriented solution
optimal application
network discriminator
major challenge
introduce d3impute
handling zero
genuinely absent
generalizable framework
fundamental issue
computational methods
comprehensive benchmarking
cellular heterogeneity
biologically informed
also offers
12 state
dc.title.none.fl_str_mv Skewness coefficients of total expression distributions across six datasets before imputation, after data transformation, and after imputation.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Skewness coefficients of total expression distributions across six datasets before imputation, after data transformation, and after imputation.</p>
eu_rights_str_mv openAccess
id Manara_02b3e9d3ffbcade5f811fbbdecad0df6
identifier_str_mv 10.1371/journal.pcbi.1013744.s033
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30756043
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Skewness coefficients of total expression distributions across six datasets before imputation, after data transformation, and after imputation.Siyi Huang (8562174)Linfeng Jiang (2416375)Ming Yi (15051)Yuan Zhu (148570)GeneticsMolecular BiologyPlant BiologyBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedxlink "> singleuses bulk rnarecovers expression valuesproviding clear guidelinesincluding cell clusteringfalse measurements causedextensive practical evaluationessential downstream analysesdifferential expression detectioncell rna sequencingcell &# 8217three key innovationsguided imputation enginedistort biological signalsaware normalization stepd3impute demonstrates consistentaccurately identify nontrue biological zerosseq data analysisbiological zerostrue transcriptomekey hurdleguide imputationbiological referenceaware modelingaware discriminationseq datainflated datadata recoverytrajectory inferencetechnical limitationsspecific characteristicssignificant improvementsoriented solutionoptimal applicationnetwork discriminatormajor challengeintroduce d3imputehandling zerogenuinely absentgeneralizable frameworkfundamental issuecomputational methodscomprehensive benchmarkingcellular heterogeneitybiologically informedalso offers12 state<p>Skewness coefficients of total expression distributions across six datasets before imputation, after data transformation, and after imputation.</p>2025-12-01T18:50:32ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pcbi.1013744.s033https://figshare.com/articles/dataset/Skewness_coefficients_of_total_expression_distributions_across_six_datasets_before_imputation_after_data_transformation_and_after_imputation_/30756043CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307560432025-12-01T18:50:32Z
spellingShingle Skewness coefficients of total expression distributions across six datasets before imputation, after data transformation, and after imputation.
Siyi Huang (8562174)
Genetics
Molecular Biology
Plant Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> single
uses bulk rna
recovers expression values
providing clear guidelines
including cell clustering
false measurements caused
extensive practical evaluation
essential downstream analyses
differential expression detection
cell rna sequencing
cell &# 8217
three key innovations
guided imputation engine
distort biological signals
aware normalization step
d3impute demonstrates consistent
accurately identify non
true biological zeros
seq data analysis
biological zeros
true transcriptome
key hurdle
guide imputation
biological reference
aware modeling
aware discrimination
seq data
inflated data
data recovery
trajectory inference
technical limitations
specific characteristics
significant improvements
oriented solution
optimal application
network discriminator
major challenge
introduce d3impute
handling zero
genuinely absent
generalizable framework
fundamental issue
computational methods
comprehensive benchmarking
cellular heterogeneity
biologically informed
also offers
12 state
status_str publishedVersion
title Skewness coefficients of total expression distributions across six datasets before imputation, after data transformation, and after imputation.
title_full Skewness coefficients of total expression distributions across six datasets before imputation, after data transformation, and after imputation.
title_fullStr Skewness coefficients of total expression distributions across six datasets before imputation, after data transformation, and after imputation.
title_full_unstemmed Skewness coefficients of total expression distributions across six datasets before imputation, after data transformation, and after imputation.
title_short Skewness coefficients of total expression distributions across six datasets before imputation, after data transformation, and after imputation.
title_sort Skewness coefficients of total expression distributions across six datasets before imputation, after data transformation, and after imputation.
topic Genetics
Molecular Biology
Plant Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> single
uses bulk rna
recovers expression values
providing clear guidelines
including cell clustering
false measurements caused
extensive practical evaluation
essential downstream analyses
differential expression detection
cell rna sequencing
cell &# 8217
three key innovations
guided imputation engine
distort biological signals
aware normalization step
d3impute demonstrates consistent
accurately identify non
true biological zeros
seq data analysis
biological zeros
true transcriptome
key hurdle
guide imputation
biological reference
aware modeling
aware discrimination
seq data
inflated data
data recovery
trajectory inference
technical limitations
specific characteristics
significant improvements
oriented solution
optimal application
network discriminator
major challenge
introduce d3impute
handling zero
genuinely absent
generalizable framework
fundamental issue
computational methods
comprehensive benchmarking
cellular heterogeneity
biologically informed
also offers
12 state