Integration of lipid ratios with multi-omic datasets to explore ether lipid metabolism in obesity.

<p>Summary figure details changes in ether lipid metabolism in obesity as indicated by the lipid ratios, liver micro-array data, and GWAS analysis. Coloured text depicts potential changes in enzymatic activity (green: increase; red: decrease), identified through linear regression analysis, adj...

Полное описание

Сохранить в:
Библиографические подробности
Главный автор: Yvette L. Schooneveldt (22138892) (author)
Другие авторы: Sudip Paul (453694) (author), Kevin Huynh (759619) (author), Habtamu B. Beyene (9427906) (author), Nat A. Mellett (22138895) (author), Gerald F. Watts (9427915) (author), Joseph Hung (418994) (author), Jennie Hui (220409) (author), John Beilby (405654) (author), John Blangero (28885) (author), Eric K. Moses (9427921) (author), Jonathan E. Shaw (6752485) (author), Dianna J. Magliano (7299471) (author), Marcus M. Seldin (17750781) (author), Brian G. Drew (6679241) (author), Anna C. Calkin (6679238) (author), Corey Giles (721742) (author), Peter J. Meikle (9427924) (author)
Опубликовано: 2025
Предметы:
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Описание
Итог:<p>Summary figure details changes in ether lipid metabolism in obesity as indicated by the lipid ratios, liver micro-array data, and GWAS analysis. Coloured text depicts potential changes in enzymatic activity (green: increase; red: decrease), identified through linear regression analysis, adjusting for age and sex, of 82 lipid ratios and waist circumference in the AusDiab cohort (<i>n</i> = 10,399). Lipid ratios were log<sub>2</sub> transformed, mean-centered and scaled to standard deviation. <i><i>p-values</i></i> were corrected for multiple comparisons using the false discovery rate method of Benjamini and Hochberg. Scatter plots depict consolidated liver micro-array data of male mice across 74 matched strains (<i>n</i> = 2−3 per strain) after either a high-fat/high-sugar (navy, <i>n</i> = 152) or chow (blue, <i>n</i> = 222) diet for eight weeks. Data was log<sub>2</sub> transformed and analyzed using Mann–Whitney <i>U</i> tests; <i><i>****p < 0.0001</i></i>. Manhattan plots show associations between the PE(O)/PE(P) and PC(O)/PC(P) ratios and <i>TMEM189</i> and <i>TMEM229B</i> loci in the BHS cohort (<i>n</i> = 4,492), respectively. Orange text depicts the location of the proposed lyso-plasmalogenase <i>TMEM229b</i>. DHAP: dihydroxyacetone phosphate; <i>Gpd1</i>: glycerol-3-phosphate dehydrogenase 1 (encodes for G3pdh); <i><i>G3pdh</i></i>: glycerol-3-phosphate dehydrogenase; DG: diacylglycerol; TG: triacylglycerol; PE: phosphatidylethanolamine; PC: phosphatidylcholine; <i><i>Gnpat</i></i>: glyceronephosphate O-acyltransferase; <i><i>Adhap-S</i></i>: alkyl-dihydroxyacetone phosphate synthase; <i><i>Far1</i></i>: fatty acyl-CoA reductase 1; <i><i>Far2</i></i>: fatty acyl-CoA reductase 2; <i><i>Tmem189</i></i>: transmembrane protein 189 (encodes for <i><i>Peds1</i></i>); <i><i>Peds1</i></i>: plasmanylethanolamine-desaturase-1; <i><i>Plc</i></i>: phospholipase C; <i><i>Pemt</i></i>: phosphatidylethanolamine N-methyltransferase; <i><i>C-pt</i></i>: choline phosphotransferase; <i><i>Pla2g6</i></i>: phospholipase A2 group VI (encodes for <i><i>iPla2</i></i>); <i><i>iPla2</i></i>: i-phospholipase A2, calcium independent phospholipase A2; <i><i>Lpeat3</i></i>: lyso-phosphatidylethanolamine acyltransferase 3; <i><i>Lpcat3:</i></i> lyso-phosphatidylcholine acyltransferase 3<i><i>; Tmem86b</i></i>: transmembrane protein 86b; <i><i>Tmem229B</i></i>: transmembrane protein 229b; <i>GPC</i>: glycerophosphocholine; <i>GPE:</i> glycerophosphoethanolamine.</p>