_version_ 1852020309811527680
author Genliang Li (5816264)
author2 Yaxin Cui (16850040)
Jingyu Su (2522416)
author2_role author
author
author_facet Genliang Li (5816264)
Yaxin Cui (16850040)
Jingyu Su (2522416)
author_role author
dc.creator.none.fl_str_mv Genliang Li (5816264)
Yaxin Cui (16850040)
Jingyu Su (2522416)
dc.date.none.fl_str_mv 2025-05-16T17:37:05Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0318903.g007
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/The_average_running_time_of_all_competing_algorithms_/29089518
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
minimal parameter requirements
grey wolf optimizer
enhance search efficiency
prevent premature convergence
feature subset size
global search capability
heuristic algorithm rooted
dimensional classification problems
gwo &# 8217
proposed amgwo method
dimensional classification
search process
global optimum
feature selection
fast convergence
&# 160
classification accuracy
widely used
thus confirming
thereby preventing
thereby enhancing
swarm intelligence
potential solutions
original gwo
machine learning
local optima
known meta
irrelevant features
getting trapped
exploitation effectively
execution speed
eliminate redundant
effectively find
data mining
crucial component
converging prematurely
balance exploration
approach encompasses
allowing amgwo
adaptive mechanism
dc.title.none.fl_str_mv The average running time of all competing algorithms.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The average running time of all competing algorithms.</p>
eu_rights_str_mv openAccess
id Manara_02bda280697c4ebec1d95ffd334f3392
identifier_str_mv 10.1371/journal.pone.0318903.g007
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29089518
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling The average running time of all competing algorithms.Genliang Li (5816264)Yaxin Cui (16850040)Jingyu Su (2522416)Biological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedminimal parameter requirementsgrey wolf optimizerenhance search efficiencyprevent premature convergencefeature subset sizeglobal search capabilityheuristic algorithm rooteddimensional classification problemsgwo &# 8217proposed amgwo methoddimensional classificationsearch processglobal optimumfeature selectionfast convergence&# 160classification accuracywidely usedthus confirmingthereby preventingthereby enhancingswarm intelligencepotential solutionsoriginal gwomachine learninglocal optimaknown metairrelevant featuresgetting trappedexploitation effectivelyexecution speedeliminate redundanteffectively finddata miningcrucial componentconverging prematurelybalance explorationapproach encompassesallowing amgwoadaptive mechanism<p>The average running time of all competing algorithms.</p>2025-05-16T17:37:05ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0318903.g007https://figshare.com/articles/figure/The_average_running_time_of_all_competing_algorithms_/29089518CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/290895182025-05-16T17:37:05Z
spellingShingle The average running time of all competing algorithms.
Genliang Li (5816264)
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
minimal parameter requirements
grey wolf optimizer
enhance search efficiency
prevent premature convergence
feature subset size
global search capability
heuristic algorithm rooted
dimensional classification problems
gwo &# 8217
proposed amgwo method
dimensional classification
search process
global optimum
feature selection
fast convergence
&# 160
classification accuracy
widely used
thus confirming
thereby preventing
thereby enhancing
swarm intelligence
potential solutions
original gwo
machine learning
local optima
known meta
irrelevant features
getting trapped
exploitation effectively
execution speed
eliminate redundant
effectively find
data mining
crucial component
converging prematurely
balance exploration
approach encompasses
allowing amgwo
adaptive mechanism
status_str publishedVersion
title The average running time of all competing algorithms.
title_full The average running time of all competing algorithms.
title_fullStr The average running time of all competing algorithms.
title_full_unstemmed The average running time of all competing algorithms.
title_short The average running time of all competing algorithms.
title_sort The average running time of all competing algorithms.
topic Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
minimal parameter requirements
grey wolf optimizer
enhance search efficiency
prevent premature convergence
feature subset size
global search capability
heuristic algorithm rooted
dimensional classification problems
gwo &# 8217
proposed amgwo method
dimensional classification
search process
global optimum
feature selection
fast convergence
&# 160
classification accuracy
widely used
thus confirming
thereby preventing
thereby enhancing
swarm intelligence
potential solutions
original gwo
machine learning
local optima
known meta
irrelevant features
getting trapped
exploitation effectively
execution speed
eliminate redundant
effectively find
data mining
crucial component
converging prematurely
balance exploration
approach encompasses
allowing amgwo
adaptive mechanism