Convergence Curves of Different Algorithms.

<div><p>In this work, a new Hybrid PSO-Whale Optimization (HPWO) algorithm is introduced to optimize energy consumption in slipform construction. By combining the global exploration power of Particle Swarm Optimization (PSO) with the local exploitation strengths of Whale Optimization Alg...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Wenqin Wang (129400) (author)
مؤلفون آخرون: Lijun Li (406691) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852014831811428352
author Wenqin Wang (129400)
author2 Lijun Li (406691)
author2_role author
author_facet Wenqin Wang (129400)
Lijun Li (406691)
author_role author
dc.creator.none.fl_str_mv Wenqin Wang (129400)
Lijun Li (406691)
dc.date.none.fl_str_mv 2025-11-14T18:37:28Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0336402.g002
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Convergence_Curves_of_Different_Algorithms_/30623591
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Ecology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Physical Sciences not elsewhere classified
Information Systems not elsewhere classified
reducing energy consumption
optimize energy consumption
local exploitation strengths
global exploration power
experimental results demonstrate
dynamic adjustment mechanisms
particle swarm optimization
objective optimization model
intelligent optimization algorithms
new hybrid pso
whale optimization algorithm
whale optimization
xlink ">
woa ),
vibration systems
slipform construction
practical solution
comprehensive multi
dc.title.none.fl_str_mv Convergence Curves of Different Algorithms.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <div><p>In this work, a new Hybrid PSO-Whale Optimization (HPWO) algorithm is introduced to optimize energy consumption in slipform construction. By combining the global exploration power of Particle Swarm Optimization (PSO) with the local exploitation strengths of Whale Optimization Algorithm (WOA), the HPWO algorithm enhances energy management through dynamic adjustment mechanisms. A comprehensive multi-objective optimization model is developed, addressing the interactions between hydraulic, climbing, and vibration systems. Experimental results demonstrate that the HPWO algorithm reduces energy consumption by an average of 18.5%, outperforming traditional optimization methods and offering a practical solution for improving construction efficiency.</p></div>
eu_rights_str_mv openAccess
id Manara_0300a6a2aaefbf825893feb5d8836485
identifier_str_mv 10.1371/journal.pone.0336402.g002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30623591
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Convergence Curves of Different Algorithms.Wenqin Wang (129400)Lijun Li (406691)EcologySpace ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedPhysical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedreducing energy consumptionoptimize energy consumptionlocal exploitation strengthsglobal exploration powerexperimental results demonstratedynamic adjustment mechanismsparticle swarm optimizationobjective optimization modelintelligent optimization algorithmsnew hybrid psowhale optimization algorithmwhale optimizationxlink ">woa ),vibration systemsslipform constructionpractical solutioncomprehensive multi<div><p>In this work, a new Hybrid PSO-Whale Optimization (HPWO) algorithm is introduced to optimize energy consumption in slipform construction. By combining the global exploration power of Particle Swarm Optimization (PSO) with the local exploitation strengths of Whale Optimization Algorithm (WOA), the HPWO algorithm enhances energy management through dynamic adjustment mechanisms. A comprehensive multi-objective optimization model is developed, addressing the interactions between hydraulic, climbing, and vibration systems. Experimental results demonstrate that the HPWO algorithm reduces energy consumption by an average of 18.5%, outperforming traditional optimization methods and offering a practical solution for improving construction efficiency.</p></div>2025-11-14T18:37:28ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0336402.g002https://figshare.com/articles/figure/Convergence_Curves_of_Different_Algorithms_/30623591CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306235912025-11-14T18:37:28Z
spellingShingle Convergence Curves of Different Algorithms.
Wenqin Wang (129400)
Ecology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Physical Sciences not elsewhere classified
Information Systems not elsewhere classified
reducing energy consumption
optimize energy consumption
local exploitation strengths
global exploration power
experimental results demonstrate
dynamic adjustment mechanisms
particle swarm optimization
objective optimization model
intelligent optimization algorithms
new hybrid pso
whale optimization algorithm
whale optimization
xlink ">
woa ),
vibration systems
slipform construction
practical solution
comprehensive multi
status_str publishedVersion
title Convergence Curves of Different Algorithms.
title_full Convergence Curves of Different Algorithms.
title_fullStr Convergence Curves of Different Algorithms.
title_full_unstemmed Convergence Curves of Different Algorithms.
title_short Convergence Curves of Different Algorithms.
title_sort Convergence Curves of Different Algorithms.
topic Ecology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Physical Sciences not elsewhere classified
Information Systems not elsewhere classified
reducing energy consumption
optimize energy consumption
local exploitation strengths
global exploration power
experimental results demonstrate
dynamic adjustment mechanisms
particle swarm optimization
objective optimization model
intelligent optimization algorithms
new hybrid pso
whale optimization algorithm
whale optimization
xlink ">
woa ),
vibration systems
slipform construction
practical solution
comprehensive multi