Model for the metabolic control of development by GlcNAc and NagS.
<p>During late vegetative growth of streptomycetes, the old vegetative or substrate hyphae are degraded in a process of programmed cell death (PCD), to produce the nutrients required to build the aerial mycelium (see mycelial drawings on the right). Mycelial lysis results in breakdown of the c...
Saved in:
| 主要作者: | |
|---|---|
| 其他作者: | , , , , , , , , , , , , , |
| 出版: |
2025
|
| 主題: | |
| 標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
| _version_ | 1849927625776037888 |
|---|---|
| author | Chao Li (145513) |
| author2 | Mia Urem (22683580) Ioli Kotsogianni (9930187) Josephine Lau (20442343) Chao Du (288036) Somayah S. Elsayed (9192571) Nathaniel I. Martin (847378) Iain W. McNae (840777) Patrick Voskamp (2311429) Christoph Mayer (57204) Sébastien Rigali (724082) Navraj Pannu (10163763) Jan Pieter Abrahams (1429531) Lennart Schada von Borzyskowski (22683583) Gilles P. van Wezel (7838948) |
| author2_role | author author author author author author author author author author author author author author |
| author_facet | Chao Li (145513) Mia Urem (22683580) Ioli Kotsogianni (9930187) Josephine Lau (20442343) Chao Du (288036) Somayah S. Elsayed (9192571) Nathaniel I. Martin (847378) Iain W. McNae (840777) Patrick Voskamp (2311429) Christoph Mayer (57204) Sébastien Rigali (724082) Navraj Pannu (10163763) Jan Pieter Abrahams (1429531) Lennart Schada von Borzyskowski (22683583) Gilles P. van Wezel (7838948) |
| author_role | author |
| dc.creator.none.fl_str_mv | Chao Li (145513) Mia Urem (22683580) Ioli Kotsogianni (9930187) Josephine Lau (20442343) Chao Du (288036) Somayah S. Elsayed (9192571) Nathaniel I. Martin (847378) Iain W. McNae (840777) Patrick Voskamp (2311429) Christoph Mayer (57204) Sébastien Rigali (724082) Navraj Pannu (10163763) Jan Pieter Abrahams (1429531) Lennart Schada von Borzyskowski (22683583) Gilles P. van Wezel (7838948) |
| dc.date.none.fl_str_mv | 2025-11-25T19:00:38Z |
| dc.identifier.none.fl_str_mv | 10.1371/journal.pbio.3003514.g006 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/figure/Model_for_the_metabolic_control_of_development_by_GlcNAc_and_NagS_/30715214 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Biochemistry Microbiology Ecology Developmental Biology Inorganic Chemistry Biological Sciences not elsewhere classified controls nutrient signaling also revealed 6 highlighted key residues glcnac sensing requires toxicity pathway dependent 6p deacetylase naga novel glcnac 6 key role substrate glcnac novel enzyme work uncovers wall leads unprecedented reaction substrate mycelium structural analogue streptomycetaceae </ streptomyces </ revolves around promiscuous activity nature ’ n </ multicellular lifestyle metabolic checkpoint medicine makers lytic dismantling landmark event hyphal cell highly conserved growth media function analysis clinical antibiotics central metabolism catalytic inhibitor antibiotic production active site >- acetylglucosamine 6p dehydratase |
| dc.title.none.fl_str_mv | Model for the metabolic control of development by GlcNAc and NagS. |
| dc.type.none.fl_str_mv | Image Figure info:eu-repo/semantics/publishedVersion image |
| description | <p>During late vegetative growth of streptomycetes, the old vegetative or substrate hyphae are degraded in a process of programmed cell death (PCD), to produce the nutrients required to build the aerial mycelium (see mycelial drawings on the right). Mycelial lysis results in breakdown of the cell-wall, leading to the accumulation of GlcNAc-6P, which is a major nutritional signal for the onset of development and antibiotic production [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.ref018" target="_blank">18</a>]. NagS converts GlcNAc-6P into 6P-chromogen I (denoted as X-Ac-6P), which in turn is deacetylated by NagA into a toxic metabolite (denoted as X-6P) that resembles ribose (<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.g005" target="_blank">Fig 5</a>). The toxic metabolite promotes cell lysis, thus releasing more GlcNAc-6P that serves as substrate for NagS and NagA. A <i>salvage pathway</i> then switches off the toxic pathway again. For this, GlcNAc-6P is converted by NagA and NagB into Fructose-6P (Fru-6P), which enters the pentose phosphate pathway (PPP), thereby producing 6-phosphogluconate (6-PG), a metabolic inhibitor of NagS (see <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.g004" target="_blank">Fig 4</a>). Thus, production of toxic metabolites ceases and the transition to aerial growth can be initiated. Arrows with round ends represent inhibition, dashed arrow shows proposed activity.</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_034a1f4e97eda20fbac9468b7acf2528 |
| identifier_str_mv | 10.1371/journal.pbio.3003514.g006 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/30715214 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | Model for the metabolic control of development by GlcNAc and NagS.Chao Li (145513)Mia Urem (22683580)Ioli Kotsogianni (9930187)Josephine Lau (20442343)Chao Du (288036)Somayah S. Elsayed (9192571)Nathaniel I. Martin (847378)Iain W. McNae (840777)Patrick Voskamp (2311429)Christoph Mayer (57204)Sébastien Rigali (724082)Navraj Pannu (10163763)Jan Pieter Abrahams (1429531)Lennart Schada von Borzyskowski (22683583)Gilles P. van Wezel (7838948)BiochemistryMicrobiologyEcologyDevelopmental BiologyInorganic ChemistryBiological Sciences not elsewhere classifiedcontrols nutrient signalingalso revealed 6highlighted key residuesglcnac sensing requirestoxicity pathway dependent6p deacetylase naganovel glcnac 6key rolesubstrate glcnacnovel enzymework uncoverswall leadsunprecedented reactionsubstrate myceliumstructural analoguestreptomycetaceae </streptomyces </revolves aroundpromiscuous activitynature ’n </multicellular lifestylemetabolic checkpointmedicine makerslytic dismantlinglandmark eventhyphal cellhighly conservedgrowth mediafunction analysisclinical antibioticscentral metabolismcatalytic inhibitorantibiotic productionactive site>- acetylglucosamine6p dehydratase<p>During late vegetative growth of streptomycetes, the old vegetative or substrate hyphae are degraded in a process of programmed cell death (PCD), to produce the nutrients required to build the aerial mycelium (see mycelial drawings on the right). Mycelial lysis results in breakdown of the cell-wall, leading to the accumulation of GlcNAc-6P, which is a major nutritional signal for the onset of development and antibiotic production [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.ref018" target="_blank">18</a>]. NagS converts GlcNAc-6P into 6P-chromogen I (denoted as X-Ac-6P), which in turn is deacetylated by NagA into a toxic metabolite (denoted as X-6P) that resembles ribose (<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.g005" target="_blank">Fig 5</a>). The toxic metabolite promotes cell lysis, thus releasing more GlcNAc-6P that serves as substrate for NagS and NagA. A <i>salvage pathway</i> then switches off the toxic pathway again. For this, GlcNAc-6P is converted by NagA and NagB into Fructose-6P (Fru-6P), which enters the pentose phosphate pathway (PPP), thereby producing 6-phosphogluconate (6-PG), a metabolic inhibitor of NagS (see <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.g004" target="_blank">Fig 4</a>). Thus, production of toxic metabolites ceases and the transition to aerial growth can be initiated. Arrows with round ends represent inhibition, dashed arrow shows proposed activity.</p>2025-11-25T19:00:38ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pbio.3003514.g006https://figshare.com/articles/figure/Model_for_the_metabolic_control_of_development_by_GlcNAc_and_NagS_/30715214CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307152142025-11-25T19:00:38Z |
| spellingShingle | Model for the metabolic control of development by GlcNAc and NagS. Chao Li (145513) Biochemistry Microbiology Ecology Developmental Biology Inorganic Chemistry Biological Sciences not elsewhere classified controls nutrient signaling also revealed 6 highlighted key residues glcnac sensing requires toxicity pathway dependent 6p deacetylase naga novel glcnac 6 key role substrate glcnac novel enzyme work uncovers wall leads unprecedented reaction substrate mycelium structural analogue streptomycetaceae </ streptomyces </ revolves around promiscuous activity nature ’ n </ multicellular lifestyle metabolic checkpoint medicine makers lytic dismantling landmark event hyphal cell highly conserved growth media function analysis clinical antibiotics central metabolism catalytic inhibitor antibiotic production active site >- acetylglucosamine 6p dehydratase |
| status_str | publishedVersion |
| title | Model for the metabolic control of development by GlcNAc and NagS. |
| title_full | Model for the metabolic control of development by GlcNAc and NagS. |
| title_fullStr | Model for the metabolic control of development by GlcNAc and NagS. |
| title_full_unstemmed | Model for the metabolic control of development by GlcNAc and NagS. |
| title_short | Model for the metabolic control of development by GlcNAc and NagS. |
| title_sort | Model for the metabolic control of development by GlcNAc and NagS. |
| topic | Biochemistry Microbiology Ecology Developmental Biology Inorganic Chemistry Biological Sciences not elsewhere classified controls nutrient signaling also revealed 6 highlighted key residues glcnac sensing requires toxicity pathway dependent 6p deacetylase naga novel glcnac 6 key role substrate glcnac novel enzyme work uncovers wall leads unprecedented reaction substrate mycelium structural analogue streptomycetaceae </ streptomyces </ revolves around promiscuous activity nature ’ n </ multicellular lifestyle metabolic checkpoint medicine makers lytic dismantling landmark event hyphal cell highly conserved growth media function analysis clinical antibiotics central metabolism catalytic inhibitor antibiotic production active site >- acetylglucosamine 6p dehydratase |