Model for the metabolic control of development by GlcNAc and NagS.

<p>During late vegetative growth of streptomycetes, the old vegetative or substrate hyphae are degraded in a process of programmed cell death (PCD), to produce the nutrients required to build the aerial mycelium (see mycelial drawings on the right). Mycelial lysis results in breakdown of the c...

全面介紹

Saved in:
書目詳細資料
主要作者: Chao Li (145513) (author)
其他作者: Mia Urem (22683580) (author), Ioli Kotsogianni (9930187) (author), Josephine Lau (20442343) (author), Chao Du (288036) (author), Somayah S. Elsayed (9192571) (author), Nathaniel I. Martin (847378) (author), Iain W. McNae (840777) (author), Patrick Voskamp (2311429) (author), Christoph Mayer (57204) (author), Sébastien Rigali (724082) (author), Navraj Pannu (10163763) (author), Jan Pieter Abrahams (1429531) (author), Lennart Schada von Borzyskowski (22683583) (author), Gilles P. van Wezel (7838948) (author)
出版: 2025
主題:
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
_version_ 1849927625776037888
author Chao Li (145513)
author2 Mia Urem (22683580)
Ioli Kotsogianni (9930187)
Josephine Lau (20442343)
Chao Du (288036)
Somayah S. Elsayed (9192571)
Nathaniel I. Martin (847378)
Iain W. McNae (840777)
Patrick Voskamp (2311429)
Christoph Mayer (57204)
Sébastien Rigali (724082)
Navraj Pannu (10163763)
Jan Pieter Abrahams (1429531)
Lennart Schada von Borzyskowski (22683583)
Gilles P. van Wezel (7838948)
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author_facet Chao Li (145513)
Mia Urem (22683580)
Ioli Kotsogianni (9930187)
Josephine Lau (20442343)
Chao Du (288036)
Somayah S. Elsayed (9192571)
Nathaniel I. Martin (847378)
Iain W. McNae (840777)
Patrick Voskamp (2311429)
Christoph Mayer (57204)
Sébastien Rigali (724082)
Navraj Pannu (10163763)
Jan Pieter Abrahams (1429531)
Lennart Schada von Borzyskowski (22683583)
Gilles P. van Wezel (7838948)
author_role author
dc.creator.none.fl_str_mv Chao Li (145513)
Mia Urem (22683580)
Ioli Kotsogianni (9930187)
Josephine Lau (20442343)
Chao Du (288036)
Somayah S. Elsayed (9192571)
Nathaniel I. Martin (847378)
Iain W. McNae (840777)
Patrick Voskamp (2311429)
Christoph Mayer (57204)
Sébastien Rigali (724082)
Navraj Pannu (10163763)
Jan Pieter Abrahams (1429531)
Lennart Schada von Borzyskowski (22683583)
Gilles P. van Wezel (7838948)
dc.date.none.fl_str_mv 2025-11-25T19:00:38Z
dc.identifier.none.fl_str_mv 10.1371/journal.pbio.3003514.g006
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Model_for_the_metabolic_control_of_development_by_GlcNAc_and_NagS_/30715214
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Microbiology
Ecology
Developmental Biology
Inorganic Chemistry
Biological Sciences not elsewhere classified
controls nutrient signaling
also revealed 6
highlighted key residues
glcnac sensing requires
toxicity pathway dependent
6p deacetylase naga
novel glcnac 6
key role
substrate glcnac
novel enzyme
work uncovers
wall leads
unprecedented reaction
substrate mycelium
structural analogue
streptomycetaceae </
streptomyces </
revolves around
promiscuous activity
nature ’
n </
multicellular lifestyle
metabolic checkpoint
medicine makers
lytic dismantling
landmark event
hyphal cell
highly conserved
growth media
function analysis
clinical antibiotics
central metabolism
catalytic inhibitor
antibiotic production
active site
>- acetylglucosamine
6p dehydratase
dc.title.none.fl_str_mv Model for the metabolic control of development by GlcNAc and NagS.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>During late vegetative growth of streptomycetes, the old vegetative or substrate hyphae are degraded in a process of programmed cell death (PCD), to produce the nutrients required to build the aerial mycelium (see mycelial drawings on the right). Mycelial lysis results in breakdown of the cell-wall, leading to the accumulation of GlcNAc-6P, which is a major nutritional signal for the onset of development and antibiotic production [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.ref018" target="_blank">18</a>]. NagS converts GlcNAc-6P into 6P-chromogen I (denoted as X-Ac-6P), which in turn is deacetylated by NagA into a toxic metabolite (denoted as X-6P) that resembles ribose (<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.g005" target="_blank">Fig 5</a>). The toxic metabolite promotes cell lysis, thus releasing more GlcNAc-6P that serves as substrate for NagS and NagA. A <i>salvage pathway</i> then switches off the toxic pathway again. For this, GlcNAc-6P is converted by NagA and NagB into Fructose-6P (Fru-6P), which enters the pentose phosphate pathway (PPP), thereby producing 6-phosphogluconate (6-PG), a metabolic inhibitor of NagS (see <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.g004" target="_blank">Fig 4</a>). Thus, production of toxic metabolites ceases and the transition to aerial growth can be initiated. Arrows with round ends represent inhibition, dashed arrow shows proposed activity.</p>
eu_rights_str_mv openAccess
id Manara_034a1f4e97eda20fbac9468b7acf2528
identifier_str_mv 10.1371/journal.pbio.3003514.g006
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30715214
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Model for the metabolic control of development by GlcNAc and NagS.Chao Li (145513)Mia Urem (22683580)Ioli Kotsogianni (9930187)Josephine Lau (20442343)Chao Du (288036)Somayah S. Elsayed (9192571)Nathaniel I. Martin (847378)Iain W. McNae (840777)Patrick Voskamp (2311429)Christoph Mayer (57204)Sébastien Rigali (724082)Navraj Pannu (10163763)Jan Pieter Abrahams (1429531)Lennart Schada von Borzyskowski (22683583)Gilles P. van Wezel (7838948)BiochemistryMicrobiologyEcologyDevelopmental BiologyInorganic ChemistryBiological Sciences not elsewhere classifiedcontrols nutrient signalingalso revealed 6highlighted key residuesglcnac sensing requirestoxicity pathway dependent6p deacetylase naganovel glcnac 6key rolesubstrate glcnacnovel enzymework uncoverswall leadsunprecedented reactionsubstrate myceliumstructural analoguestreptomycetaceae </streptomyces </revolves aroundpromiscuous activitynature ’n </multicellular lifestylemetabolic checkpointmedicine makerslytic dismantlinglandmark eventhyphal cellhighly conservedgrowth mediafunction analysisclinical antibioticscentral metabolismcatalytic inhibitorantibiotic productionactive site>- acetylglucosamine6p dehydratase<p>During late vegetative growth of streptomycetes, the old vegetative or substrate hyphae are degraded in a process of programmed cell death (PCD), to produce the nutrients required to build the aerial mycelium (see mycelial drawings on the right). Mycelial lysis results in breakdown of the cell-wall, leading to the accumulation of GlcNAc-6P, which is a major nutritional signal for the onset of development and antibiotic production [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.ref018" target="_blank">18</a>]. NagS converts GlcNAc-6P into 6P-chromogen I (denoted as X-Ac-6P), which in turn is deacetylated by NagA into a toxic metabolite (denoted as X-6P) that resembles ribose (<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.g005" target="_blank">Fig 5</a>). The toxic metabolite promotes cell lysis, thus releasing more GlcNAc-6P that serves as substrate for NagS and NagA. A <i>salvage pathway</i> then switches off the toxic pathway again. For this, GlcNAc-6P is converted by NagA and NagB into Fructose-6P (Fru-6P), which enters the pentose phosphate pathway (PPP), thereby producing 6-phosphogluconate (6-PG), a metabolic inhibitor of NagS (see <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.g004" target="_blank">Fig 4</a>). Thus, production of toxic metabolites ceases and the transition to aerial growth can be initiated. Arrows with round ends represent inhibition, dashed arrow shows proposed activity.</p>2025-11-25T19:00:38ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pbio.3003514.g006https://figshare.com/articles/figure/Model_for_the_metabolic_control_of_development_by_GlcNAc_and_NagS_/30715214CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307152142025-11-25T19:00:38Z
spellingShingle Model for the metabolic control of development by GlcNAc and NagS.
Chao Li (145513)
Biochemistry
Microbiology
Ecology
Developmental Biology
Inorganic Chemistry
Biological Sciences not elsewhere classified
controls nutrient signaling
also revealed 6
highlighted key residues
glcnac sensing requires
toxicity pathway dependent
6p deacetylase naga
novel glcnac 6
key role
substrate glcnac
novel enzyme
work uncovers
wall leads
unprecedented reaction
substrate mycelium
structural analogue
streptomycetaceae </
streptomyces </
revolves around
promiscuous activity
nature ’
n </
multicellular lifestyle
metabolic checkpoint
medicine makers
lytic dismantling
landmark event
hyphal cell
highly conserved
growth media
function analysis
clinical antibiotics
central metabolism
catalytic inhibitor
antibiotic production
active site
>- acetylglucosamine
6p dehydratase
status_str publishedVersion
title Model for the metabolic control of development by GlcNAc and NagS.
title_full Model for the metabolic control of development by GlcNAc and NagS.
title_fullStr Model for the metabolic control of development by GlcNAc and NagS.
title_full_unstemmed Model for the metabolic control of development by GlcNAc and NagS.
title_short Model for the metabolic control of development by GlcNAc and NagS.
title_sort Model for the metabolic control of development by GlcNAc and NagS.
topic Biochemistry
Microbiology
Ecology
Developmental Biology
Inorganic Chemistry
Biological Sciences not elsewhere classified
controls nutrient signaling
also revealed 6
highlighted key residues
glcnac sensing requires
toxicity pathway dependent
6p deacetylase naga
novel glcnac 6
key role
substrate glcnac
novel enzyme
work uncovers
wall leads
unprecedented reaction
substrate mycelium
structural analogue
streptomycetaceae </
streptomyces </
revolves around
promiscuous activity
nature ’
n </
multicellular lifestyle
metabolic checkpoint
medicine makers
lytic dismantling
landmark event
hyphal cell
highly conserved
growth media
function analysis
clinical antibiotics
central metabolism
catalytic inhibitor
antibiotic production
active site
>- acetylglucosamine
6p dehydratase