Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model
<p>In this article, we delve into the quantile regression and homogeneity detection of a varying index coefficient panel data model, which incorporates fixed individual effects and exhibits nonlinear time trends. Using spline approximation, we obtain estimators for the trend functions, link fu...
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , |
| منشور في: |
2024
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| _version_ | 1852024895575162880 |
|---|---|
| author | Rui Li (4631) |
| author2 | Tao Li (86810) Huacheng Su (20330062) Jinhong You (5341619) |
| author2_role | author author author |
| author_facet | Rui Li (4631) Tao Li (86810) Huacheng Su (20330062) Jinhong You (5341619) |
| author_role | author |
| dc.creator.none.fl_str_mv | Rui Li (4631) Tao Li (86810) Huacheng Su (20330062) Jinhong You (5341619) |
| dc.date.none.fl_str_mv | 2024-11-26T20:00:22Z |
| dc.identifier.none.fl_str_mv | 10.6084/m9.figshare.27912883.v1 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/dataset/Quantile_Regression_and_Homogeneity_Identification_of_a_Semiparametric_Panel_Data_Model/27912883 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Neuroscience Biotechnology Environmental Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Chemical Sciences not elsewhere classified Binary segmentation Panel data Quantile regression Trend function Varying index coefficient model |
| dc.title.none.fl_str_mv | Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model |
| dc.type.none.fl_str_mv | Dataset info:eu-repo/semantics/publishedVersion dataset |
| description | <p>In this article, we delve into the quantile regression and homogeneity detection of a varying index coefficient panel data model, which incorporates fixed individual effects and exhibits nonlinear time trends. Using spline approximation, we obtain estimators for the trend functions, link functions, and index parameters, and subsequently establish the corresponding convergence rates and asymptotic normality. Observing that subjects within a group may share identical trend functions, we are motivated to further explore potential homogeneity in these trends. To this end, we propose a homogeneity identification algorithm based on binary segmentation. For the determination of the thresholding parameter in homogeneity identification, we propose a generalized Bayesian information criterion. Furthermore, we introduce a penalized method to discern the constant and linear structures within the nonparametric functions of our model. By leveraging grouped observations, we achieve more efficient estimation and improve the asymptotic properties of the estimators. To demonstrate the finite sample performance of our proposed approach, we conduct simulation studies and apply our methodology to a real-world dataset comprising Air Pollution Data and Integrated Surface Data (APD&ISD). Supplementary materials for this article are available online.</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_0561389f2e8ac6c7823a29052d307f4d |
| identifier_str_mv | 10.6084/m9.figshare.27912883.v1 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/27912883 |
| publishDate | 2024 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data ModelRui Li (4631)Tao Li (86810)Huacheng Su (20330062)Jinhong You (5341619)NeuroscienceBiotechnologyEnvironmental Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedBinary segmentationPanel dataQuantile regressionTrend functionVarying index coefficient model<p>In this article, we delve into the quantile regression and homogeneity detection of a varying index coefficient panel data model, which incorporates fixed individual effects and exhibits nonlinear time trends. Using spline approximation, we obtain estimators for the trend functions, link functions, and index parameters, and subsequently establish the corresponding convergence rates and asymptotic normality. Observing that subjects within a group may share identical trend functions, we are motivated to further explore potential homogeneity in these trends. To this end, we propose a homogeneity identification algorithm based on binary segmentation. For the determination of the thresholding parameter in homogeneity identification, we propose a generalized Bayesian information criterion. Furthermore, we introduce a penalized method to discern the constant and linear structures within the nonparametric functions of our model. By leveraging grouped observations, we achieve more efficient estimation and improve the asymptotic properties of the estimators. To demonstrate the finite sample performance of our proposed approach, we conduct simulation studies and apply our methodology to a real-world dataset comprising Air Pollution Data and Integrated Surface Data (APD&ISD). Supplementary materials for this article are available online.</p>2024-11-26T20:00:22ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.6084/m9.figshare.27912883.v1https://figshare.com/articles/dataset/Quantile_Regression_and_Homogeneity_Identification_of_a_Semiparametric_Panel_Data_Model/27912883CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/279128832024-11-26T20:00:22Z |
| spellingShingle | Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model Rui Li (4631) Neuroscience Biotechnology Environmental Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Chemical Sciences not elsewhere classified Binary segmentation Panel data Quantile regression Trend function Varying index coefficient model |
| status_str | publishedVersion |
| title | Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model |
| title_full | Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model |
| title_fullStr | Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model |
| title_full_unstemmed | Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model |
| title_short | Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model |
| title_sort | Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model |
| topic | Neuroscience Biotechnology Environmental Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Chemical Sciences not elsewhere classified Binary segmentation Panel data Quantile regression Trend function Varying index coefficient model |