Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model

<p>In this article, we delve into the quantile regression and homogeneity detection of a varying index coefficient panel data model, which incorporates fixed individual effects and exhibits nonlinear time trends. Using spline approximation, we obtain estimators for the trend functions, link fu...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Rui Li (4631) (author)
مؤلفون آخرون: Tao Li (86810) (author), Huacheng Su (20330062) (author), Jinhong You (5341619) (author)
منشور في: 2024
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852024895575162880
author Rui Li (4631)
author2 Tao Li (86810)
Huacheng Su (20330062)
Jinhong You (5341619)
author2_role author
author
author
author_facet Rui Li (4631)
Tao Li (86810)
Huacheng Su (20330062)
Jinhong You (5341619)
author_role author
dc.creator.none.fl_str_mv Rui Li (4631)
Tao Li (86810)
Huacheng Su (20330062)
Jinhong You (5341619)
dc.date.none.fl_str_mv 2024-11-26T20:00:22Z
dc.identifier.none.fl_str_mv 10.6084/m9.figshare.27912883.v1
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Quantile_Regression_and_Homogeneity_Identification_of_a_Semiparametric_Panel_Data_Model/27912883
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Neuroscience
Biotechnology
Environmental Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Binary segmentation
Panel data
Quantile regression
Trend function
Varying index coefficient model
dc.title.none.fl_str_mv Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>In this article, we delve into the quantile regression and homogeneity detection of a varying index coefficient panel data model, which incorporates fixed individual effects and exhibits nonlinear time trends. Using spline approximation, we obtain estimators for the trend functions, link functions, and index parameters, and subsequently establish the corresponding convergence rates and asymptotic normality. Observing that subjects within a group may share identical trend functions, we are motivated to further explore potential homogeneity in these trends. To this end, we propose a homogeneity identification algorithm based on binary segmentation. For the determination of the thresholding parameter in homogeneity identification, we propose a generalized Bayesian information criterion. Furthermore, we introduce a penalized method to discern the constant and linear structures within the nonparametric functions of our model. By leveraging grouped observations, we achieve more efficient estimation and improve the asymptotic properties of the estimators. To demonstrate the finite sample performance of our proposed approach, we conduct simulation studies and apply our methodology to a real-world dataset comprising Air Pollution Data and Integrated Surface Data (APD&ISD). Supplementary materials for this article are available online.</p>
eu_rights_str_mv openAccess
id Manara_0561389f2e8ac6c7823a29052d307f4d
identifier_str_mv 10.6084/m9.figshare.27912883.v1
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/27912883
publishDate 2024
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data ModelRui Li (4631)Tao Li (86810)Huacheng Su (20330062)Jinhong You (5341619)NeuroscienceBiotechnologyEnvironmental Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedBinary segmentationPanel dataQuantile regressionTrend functionVarying index coefficient model<p>In this article, we delve into the quantile regression and homogeneity detection of a varying index coefficient panel data model, which incorporates fixed individual effects and exhibits nonlinear time trends. Using spline approximation, we obtain estimators for the trend functions, link functions, and index parameters, and subsequently establish the corresponding convergence rates and asymptotic normality. Observing that subjects within a group may share identical trend functions, we are motivated to further explore potential homogeneity in these trends. To this end, we propose a homogeneity identification algorithm based on binary segmentation. For the determination of the thresholding parameter in homogeneity identification, we propose a generalized Bayesian information criterion. Furthermore, we introduce a penalized method to discern the constant and linear structures within the nonparametric functions of our model. By leveraging grouped observations, we achieve more efficient estimation and improve the asymptotic properties of the estimators. To demonstrate the finite sample performance of our proposed approach, we conduct simulation studies and apply our methodology to a real-world dataset comprising Air Pollution Data and Integrated Surface Data (APD&ISD). Supplementary materials for this article are available online.</p>2024-11-26T20:00:22ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.6084/m9.figshare.27912883.v1https://figshare.com/articles/dataset/Quantile_Regression_and_Homogeneity_Identification_of_a_Semiparametric_Panel_Data_Model/27912883CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/279128832024-11-26T20:00:22Z
spellingShingle Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model
Rui Li (4631)
Neuroscience
Biotechnology
Environmental Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Binary segmentation
Panel data
Quantile regression
Trend function
Varying index coefficient model
status_str publishedVersion
title Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model
title_full Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model
title_fullStr Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model
title_full_unstemmed Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model
title_short Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model
title_sort Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model
topic Neuroscience
Biotechnology
Environmental Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Binary segmentation
Panel data
Quantile regression
Trend function
Varying index coefficient model