The Altitude Control (left) and Training Curve (right) obtained on SAC agent.

<p>The Altitude Control (left) and Training Curve (right) obtained on SAC agent.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Hasan Raza Khanzada (22404835) (author)
مؤلفون آخرون: Adnan Maqsood (22404838) (author), Abdul Basit (174463) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852015875825074176
author Hasan Raza Khanzada (22404835)
author2 Adnan Maqsood (22404838)
Abdul Basit (174463)
author2_role author
author
author_facet Hasan Raza Khanzada (22404835)
Adnan Maqsood (22404838)
Abdul Basit (174463)
author_role author
dc.creator.none.fl_str_mv Hasan Raza Khanzada (22404835)
Adnan Maqsood (22404838)
Abdul Basit (174463)
dc.date.none.fl_str_mv 2025-10-09T20:08:01Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0334219.g019
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/The_Altitude_Control_left_and_Training_Curve_right_obtained_on_SAC_agent_/30324082
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cell Biology
Biotechnology
Ecology
Inorganic Chemistry
Science Policy
Biological Sciences not elsewhere classified
critical gap persists
classical pid controllers
3 %, offering
varying flight conditions
suitable rl algorithm
space rl algorithms
rl algorithms outperformed
provide valuable insight
comparative analysis reveals
uav flight controls
evaluated rl algorithms
comparative analysis
flight control
rl agents
rl ).
analysis aims
wing uavs
wind gusts
uncertain environments
uavs ).
state error
soft actor
rigorous evaluation
results demonstrate
relative strengths
reinforcement learning
recent studies
paper aims
major shift
leading continuous
environmental disturbances
deliver robust
control pitch
best trade
400 episodes
dc.title.none.fl_str_mv The Altitude Control (left) and Training Curve (right) obtained on SAC agent.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The Altitude Control (left) and Training Curve (right) obtained on SAC agent.</p>
eu_rights_str_mv openAccess
id Manara_062072c339fd174cd1da68cfadd34968
identifier_str_mv 10.1371/journal.pone.0334219.g019
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30324082
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling The Altitude Control (left) and Training Curve (right) obtained on SAC agent.Hasan Raza Khanzada (22404835)Adnan Maqsood (22404838)Abdul Basit (174463)Cell BiologyBiotechnologyEcologyInorganic ChemistryScience PolicyBiological Sciences not elsewhere classifiedcritical gap persistsclassical pid controllers3 %, offeringvarying flight conditionssuitable rl algorithmspace rl algorithmsrl algorithms outperformedprovide valuable insightcomparative analysis revealsuav flight controlsevaluated rl algorithmscomparative analysisflight controlrl agentsrl ).analysis aimswing uavswind gustsuncertain environmentsuavs ).state errorsoft actorrigorous evaluationresults demonstraterelative strengthsreinforcement learningrecent studiespaper aimsmajor shiftleading continuousenvironmental disturbancesdeliver robustcontrol pitchbest trade400 episodes<p>The Altitude Control (left) and Training Curve (right) obtained on SAC agent.</p>2025-10-09T20:08:01ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0334219.g019https://figshare.com/articles/figure/The_Altitude_Control_left_and_Training_Curve_right_obtained_on_SAC_agent_/30324082CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/303240822025-10-09T20:08:01Z
spellingShingle The Altitude Control (left) and Training Curve (right) obtained on SAC agent.
Hasan Raza Khanzada (22404835)
Cell Biology
Biotechnology
Ecology
Inorganic Chemistry
Science Policy
Biological Sciences not elsewhere classified
critical gap persists
classical pid controllers
3 %, offering
varying flight conditions
suitable rl algorithm
space rl algorithms
rl algorithms outperformed
provide valuable insight
comparative analysis reveals
uav flight controls
evaluated rl algorithms
comparative analysis
flight control
rl agents
rl ).
analysis aims
wing uavs
wind gusts
uncertain environments
uavs ).
state error
soft actor
rigorous evaluation
results demonstrate
relative strengths
reinforcement learning
recent studies
paper aims
major shift
leading continuous
environmental disturbances
deliver robust
control pitch
best trade
400 episodes
status_str publishedVersion
title The Altitude Control (left) and Training Curve (right) obtained on SAC agent.
title_full The Altitude Control (left) and Training Curve (right) obtained on SAC agent.
title_fullStr The Altitude Control (left) and Training Curve (right) obtained on SAC agent.
title_full_unstemmed The Altitude Control (left) and Training Curve (right) obtained on SAC agent.
title_short The Altitude Control (left) and Training Curve (right) obtained on SAC agent.
title_sort The Altitude Control (left) and Training Curve (right) obtained on SAC agent.
topic Cell Biology
Biotechnology
Ecology
Inorganic Chemistry
Science Policy
Biological Sciences not elsewhere classified
critical gap persists
classical pid controllers
3 %, offering
varying flight conditions
suitable rl algorithm
space rl algorithms
rl algorithms outperformed
provide valuable insight
comparative analysis reveals
uav flight controls
evaluated rl algorithms
comparative analysis
flight control
rl agents
rl ).
analysis aims
wing uavs
wind gusts
uncertain environments
uavs ).
state error
soft actor
rigorous evaluation
results demonstrate
relative strengths
reinforcement learning
recent studies
paper aims
major shift
leading continuous
environmental disturbances
deliver robust
control pitch
best trade
400 episodes