Comparative analysis of spike sorting using Uniform Manifold Approximation and Projection (UMAP) vs. feature-based methods in in vivo extracellular recordings.

<p>Recordings from Buzsáki’s lab [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003527#pbio.3003527.ref026" target="_blank">26</a>] include an intracellular electrode serving as ground truth (GT, green) and four extracellular electro...

Ful tanımlama

Kaydedildi:
Detaylı Bibliyografya
Yazar: Daniel Suárez-Barrera (22676654) (author)
Diğer Yazarlar: Lucas Bayones (22676657) (author), Norberto Encinas-Rodríguez (22676660) (author), Sergio Parra (22676663) (author), Viktor Monroy (22676666) (author), Sebastián Pujalte (22676669) (author), Bernardo Andrade-Ortega (22676672) (author), Héctor Díaz (22676675) (author), Manuel Alvarez (3468647) (author), Antonio Zainos (22676678) (author), Alessio Franci (143351) (author), Román Rossi-Pool (22676681) (author)
Baskı/Yayın Bilgisi: 2025
Konular:
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
_version_ 1849927641743753216
author Daniel Suárez-Barrera (22676654)
author2 Lucas Bayones (22676657)
Norberto Encinas-Rodríguez (22676660)
Sergio Parra (22676663)
Viktor Monroy (22676666)
Sebastián Pujalte (22676669)
Bernardo Andrade-Ortega (22676672)
Héctor Díaz (22676675)
Manuel Alvarez (3468647)
Antonio Zainos (22676678)
Alessio Franci (143351)
Román Rossi-Pool (22676681)
author2_role author
author
author
author
author
author
author
author
author
author
author
author_facet Daniel Suárez-Barrera (22676654)
Lucas Bayones (22676657)
Norberto Encinas-Rodríguez (22676660)
Sergio Parra (22676663)
Viktor Monroy (22676666)
Sebastián Pujalte (22676669)
Bernardo Andrade-Ortega (22676672)
Héctor Díaz (22676675)
Manuel Alvarez (3468647)
Antonio Zainos (22676678)
Alessio Franci (143351)
Román Rossi-Pool (22676681)
author_role author
dc.creator.none.fl_str_mv Daniel Suárez-Barrera (22676654)
Lucas Bayones (22676657)
Norberto Encinas-Rodríguez (22676660)
Sergio Parra (22676663)
Viktor Monroy (22676666)
Sebastián Pujalte (22676669)
Bernardo Andrade-Ortega (22676672)
Héctor Díaz (22676675)
Manuel Alvarez (3468647)
Antonio Zainos (22676678)
Alessio Franci (143351)
Román Rossi-Pool (22676681)
dc.date.none.fl_str_mv 2025-11-24T18:33:37Z
dc.identifier.none.fl_str_mv 10.1371/journal.pbio.3003527.g006
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Comparative_analysis_of_spike_sorting_using_Uniform_Manifold_Approximation_and_Projection_UMAP_vs_feature-based_methods_in_in_vivo_extracellular_recordings_/30697592
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cell Biology
Molecular Biology
Neuroscience
Physiology
Biotechnology
Developmental Biology
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
spike sorting pipelines
spike sorting pipeline
seldom spiking neurons
recorded putative neurons
correctly sorted neurons
clustering algorithms responsible
spike sorting makes
reliable spike sorting
umap drastically increases
data analysis techniques
drastically improve
processed data
experimental data
universal practice
precise explorations
neural recordings
neural code
mathematically grounded
fundamentally motivated
extracellular electrophysiology
enables deeper
crucial step
computational cost
ad hoc
dc.title.none.fl_str_mv Comparative analysis of spike sorting using Uniform Manifold Approximation and Projection (UMAP) vs. feature-based methods in in vivo extracellular recordings.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Recordings from Buzsáki’s lab [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003527#pbio.3003527.ref026" target="_blank">26</a>] include an intracellular electrode serving as ground truth (GT, green) and four extracellular electrodes (<i>E</i><sub><i>1</i></sub><i>–E</i><sub><i>4</i></sub>) placed at different distances from the GT neuron. <b>(A)</b> UMAP-based sorting on electrode <i>E</i><sub><i>1</i></sub> identifies four clusters (distinct shapes). One cluster (<i>S</i><sub><i>E1</i></sub>, circular markers) overlaps substantially with the GT neuron, while the other three represent separate putative neurons. <b>(B)</b> Raster plots for GT clusters found by UMAP on each extracellular electrode, alongside the GT neuron’s raster. Each raster line is horizontally split; the color saturation of the top half represents the precision (percentage of cluster spikes that come from the GT), and the color saturation of the bottom half indicates the recall (percentage of GT spikes captured by that cluster) (see color bar in G). Electrodes <i>E</i><sub><i>1</i></sub> and <i>E</i><sub><i>2</i></sub> align well with the GT neuron (uniform dark blue), whereas <i>E</i><sub><i>3</i></sub>’s cluster is contaminated (low precision), and <i>E</i><sub><i>4</i></sub>’s cluster loses many GT spikes (low recall). <b>(C)</b> Inclusion Index matrix <i>M</i><sub><i>i,j</i></sub> for UMAP, illustrating overlap of GT spikes across electrode clusters. Darker squares for <i>E</i><sub><i>1</i></sub> and <i>E</i><sub><i>2</i></sub> reflect accurate capture of GT spikes, while <i>E</i><sub><i>3</i></sub> and <i>E</i><sub><i>4</i></sub> show contamination and loss, respectively. <b>(D)</b> UMAP-sorted waveforms from <i>E</i><sub><i>1</i></sub>, color-coded to match the clusters in (A). <b>(E)</b> Experimental schematic from Buzsáki’s lab, showing the intracellular GT neuron and four extracellular electrodes. <b>(F)</b> UMAP sorting on electrode <i>E</i><sub><i>3</i></sub> highlights significant contamination, with many not-GT spikes mislabeled as GT (shown in a separate color). <b>(G)</b> Color bar for the inclusion matrices (C, J, M). <b>(H–J)</b> Wavelet-based sorting: (H) projection of spikes from <i>E</i><sub><i>1</i></sub> in Wavelet feature space, identifying multiple clusters. (I) Raster plots for the GT clusters on each electrode. The GT neuron’s pattern is not well isolated. (J) Inclusion matrix shows low, inconsistent overlap for GT spikes across electrodes. <b>(K–M)</b> PCA-based sorting: (K) PCA projection for <i>E</i><sub><i>1</i></sub>, resulting in broad, overlapping clusters. (L) Raster plots for these GT clusters showing substantial contamination. (M) Inclusion matrix reflects the poor specificity of PCA-based clustering, with larger fractions of non-GT in each putative cluster. The data containing simultaneous intracellular and extracellular recordings from the hippocampus can be found at [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003527#pbio.3003527.ref040" target="_blank">40</a>], and the analysis code is available at [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003527#pbio.3003527.ref049" target="_blank">49</a>].</p>
eu_rights_str_mv openAccess
id Manara_064cb59fb01c30a244e03fdf1914750a
identifier_str_mv 10.1371/journal.pbio.3003527.g006
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30697592
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Comparative analysis of spike sorting using Uniform Manifold Approximation and Projection (UMAP) vs. feature-based methods in in vivo extracellular recordings.Daniel Suárez-Barrera (22676654)Lucas Bayones (22676657)Norberto Encinas-Rodríguez (22676660)Sergio Parra (22676663)Viktor Monroy (22676666)Sebastián Pujalte (22676669)Bernardo Andrade-Ortega (22676672)Héctor Díaz (22676675)Manuel Alvarez (3468647)Antonio Zainos (22676678)Alessio Franci (143351)Román Rossi-Pool (22676681)Cell BiologyMolecular BiologyNeurosciencePhysiologyBiotechnologyDevelopmental BiologyScience PolicySpace ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedspike sorting pipelinesspike sorting pipelineseldom spiking neuronsrecorded putative neuronscorrectly sorted neuronsclustering algorithms responsiblespike sorting makesreliable spike sortingumap drastically increasesdata analysis techniquesdrastically improveprocessed dataexperimental datauniversal practiceprecise explorationsneural recordingsneural codemathematically groundedfundamentally motivatedextracellular electrophysiologyenables deepercrucial stepcomputational costad hoc<p>Recordings from Buzsáki’s lab [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003527#pbio.3003527.ref026" target="_blank">26</a>] include an intracellular electrode serving as ground truth (GT, green) and four extracellular electrodes (<i>E</i><sub><i>1</i></sub><i>–E</i><sub><i>4</i></sub>) placed at different distances from the GT neuron. <b>(A)</b> UMAP-based sorting on electrode <i>E</i><sub><i>1</i></sub> identifies four clusters (distinct shapes). One cluster (<i>S</i><sub><i>E1</i></sub>, circular markers) overlaps substantially with the GT neuron, while the other three represent separate putative neurons. <b>(B)</b> Raster plots for GT clusters found by UMAP on each extracellular electrode, alongside the GT neuron’s raster. Each raster line is horizontally split; the color saturation of the top half represents the precision (percentage of cluster spikes that come from the GT), and the color saturation of the bottom half indicates the recall (percentage of GT spikes captured by that cluster) (see color bar in G). Electrodes <i>E</i><sub><i>1</i></sub> and <i>E</i><sub><i>2</i></sub> align well with the GT neuron (uniform dark blue), whereas <i>E</i><sub><i>3</i></sub>’s cluster is contaminated (low precision), and <i>E</i><sub><i>4</i></sub>’s cluster loses many GT spikes (low recall). <b>(C)</b> Inclusion Index matrix <i>M</i><sub><i>i,j</i></sub> for UMAP, illustrating overlap of GT spikes across electrode clusters. Darker squares for <i>E</i><sub><i>1</i></sub> and <i>E</i><sub><i>2</i></sub> reflect accurate capture of GT spikes, while <i>E</i><sub><i>3</i></sub> and <i>E</i><sub><i>4</i></sub> show contamination and loss, respectively. <b>(D)</b> UMAP-sorted waveforms from <i>E</i><sub><i>1</i></sub>, color-coded to match the clusters in (A). <b>(E)</b> Experimental schematic from Buzsáki’s lab, showing the intracellular GT neuron and four extracellular electrodes. <b>(F)</b> UMAP sorting on electrode <i>E</i><sub><i>3</i></sub> highlights significant contamination, with many not-GT spikes mislabeled as GT (shown in a separate color). <b>(G)</b> Color bar for the inclusion matrices (C, J, M). <b>(H–J)</b> Wavelet-based sorting: (H) projection of spikes from <i>E</i><sub><i>1</i></sub> in Wavelet feature space, identifying multiple clusters. (I) Raster plots for the GT clusters on each electrode. The GT neuron’s pattern is not well isolated. (J) Inclusion matrix shows low, inconsistent overlap for GT spikes across electrodes. <b>(K–M)</b> PCA-based sorting: (K) PCA projection for <i>E</i><sub><i>1</i></sub>, resulting in broad, overlapping clusters. (L) Raster plots for these GT clusters showing substantial contamination. (M) Inclusion matrix reflects the poor specificity of PCA-based clustering, with larger fractions of non-GT in each putative cluster. The data containing simultaneous intracellular and extracellular recordings from the hippocampus can be found at [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003527#pbio.3003527.ref040" target="_blank">40</a>], and the analysis code is available at [<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003527#pbio.3003527.ref049" target="_blank">49</a>].</p>2025-11-24T18:33:37ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pbio.3003527.g006https://figshare.com/articles/figure/Comparative_analysis_of_spike_sorting_using_Uniform_Manifold_Approximation_and_Projection_UMAP_vs_feature-based_methods_in_in_vivo_extracellular_recordings_/30697592CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306975922025-11-24T18:33:37Z
spellingShingle Comparative analysis of spike sorting using Uniform Manifold Approximation and Projection (UMAP) vs. feature-based methods in in vivo extracellular recordings.
Daniel Suárez-Barrera (22676654)
Cell Biology
Molecular Biology
Neuroscience
Physiology
Biotechnology
Developmental Biology
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
spike sorting pipelines
spike sorting pipeline
seldom spiking neurons
recorded putative neurons
correctly sorted neurons
clustering algorithms responsible
spike sorting makes
reliable spike sorting
umap drastically increases
data analysis techniques
drastically improve
processed data
experimental data
universal practice
precise explorations
neural recordings
neural code
mathematically grounded
fundamentally motivated
extracellular electrophysiology
enables deeper
crucial step
computational cost
ad hoc
status_str publishedVersion
title Comparative analysis of spike sorting using Uniform Manifold Approximation and Projection (UMAP) vs. feature-based methods in in vivo extracellular recordings.
title_full Comparative analysis of spike sorting using Uniform Manifold Approximation and Projection (UMAP) vs. feature-based methods in in vivo extracellular recordings.
title_fullStr Comparative analysis of spike sorting using Uniform Manifold Approximation and Projection (UMAP) vs. feature-based methods in in vivo extracellular recordings.
title_full_unstemmed Comparative analysis of spike sorting using Uniform Manifold Approximation and Projection (UMAP) vs. feature-based methods in in vivo extracellular recordings.
title_short Comparative analysis of spike sorting using Uniform Manifold Approximation and Projection (UMAP) vs. feature-based methods in in vivo extracellular recordings.
title_sort Comparative analysis of spike sorting using Uniform Manifold Approximation and Projection (UMAP) vs. feature-based methods in in vivo extracellular recordings.
topic Cell Biology
Molecular Biology
Neuroscience
Physiology
Biotechnology
Developmental Biology
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
spike sorting pipelines
spike sorting pipeline
seldom spiking neurons
recorded putative neurons
correctly sorted neurons
clustering algorithms responsible
spike sorting makes
reliable spike sorting
umap drastically increases
data analysis techniques
drastically improve
processed data
experimental data
universal practice
precise explorations
neural recordings
neural code
mathematically grounded
fundamentally motivated
extracellular electrophysiology
enables deeper
crucial step
computational cost
ad hoc