Regional analysis of socioeconomic indicators and federated learning performance gain.

<p>The table presents a systematic comparison across Brazil’s five macro-regions, linking key socioeconomic and health indicators with the study’s sample characteristics (number of hospitals and average patient cohort size per hospital). The primary outcome, the mean performance gain from fede...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: Roberta Moreira Wichmann (14259316) (author)
Tác giả khác: Murilo Afonso Robiati Bigoto (22676715) (author), Alexandre Dias Porto Chiavegatto Filho (14259328) (author)
Được phát hành: 2025
Những chủ đề:
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
Miêu tả
Tóm tắt:<p>The table presents a systematic comparison across Brazil’s five macro-regions, linking key socioeconomic and health indicators with the study’s sample characteristics (number of hospitals and average patient cohort size per hospital). The primary outcome, the mean performance gain from federated learning (<i>Δ</i>AUC = AUC - AUC), is presented for each of the three models: Logistic Regression (LR), Multilayer Perceptron (MLP), and Random Forest (RF). The mean <i>Δ</i>AUC values for each region were calculated by averaging the hospital-specific mean <i>Δ</i>AUCs reported in S1 Table (for Logistic Regression), <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013695#pcbi.1013695.s003" target="_blank">S2 Table</a> (for MLP), and <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013695#pcbi.1013695.s004" target="_blank">S3 Table</a> (for Random Forest) across all hospitals within that geographical region. This allows for a higher-level investigation of the relationship between regional characteristics and the benefits of the federated approach.</p> <p>(XLSX)</p>