Analysis of the binding site of NagS and activity of NagS mutants.

<p><b>(a)</b> NagS active site with bound GlcNAc-6P (gray carbons), protein residues are coloured with pale blue and yellow carbons to indicate the 2 monomers forming the active site. 2|Fo|-|Fc| electron density contoured at 1.2 σ is shown as cyan mesh. Hydrogen bonds are indicated...

Täydet tiedot

Tallennettuna:
Bibliografiset tiedot
Päätekijä: Chao Li (145513) (author)
Muut tekijät: Mia Urem (22683580) (author), Ioli Kotsogianni (9930187) (author), Josephine Lau (20442343) (author), Chao Du (288036) (author), Somayah S. Elsayed (9192571) (author), Nathaniel I. Martin (847378) (author), Iain W. McNae (840777) (author), Patrick Voskamp (2311429) (author), Christoph Mayer (57204) (author), Sébastien Rigali (724082) (author), Navraj Pannu (10163763) (author), Jan Pieter Abrahams (1429531) (author), Lennart Schada von Borzyskowski (22683583) (author), Gilles P. van Wezel (7838948) (author)
Julkaistu: 2025
Aiheet:
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
_version_ 1849927625787572224
author Chao Li (145513)
author2 Mia Urem (22683580)
Ioli Kotsogianni (9930187)
Josephine Lau (20442343)
Chao Du (288036)
Somayah S. Elsayed (9192571)
Nathaniel I. Martin (847378)
Iain W. McNae (840777)
Patrick Voskamp (2311429)
Christoph Mayer (57204)
Sébastien Rigali (724082)
Navraj Pannu (10163763)
Jan Pieter Abrahams (1429531)
Lennart Schada von Borzyskowski (22683583)
Gilles P. van Wezel (7838948)
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author_facet Chao Li (145513)
Mia Urem (22683580)
Ioli Kotsogianni (9930187)
Josephine Lau (20442343)
Chao Du (288036)
Somayah S. Elsayed (9192571)
Nathaniel I. Martin (847378)
Iain W. McNae (840777)
Patrick Voskamp (2311429)
Christoph Mayer (57204)
Sébastien Rigali (724082)
Navraj Pannu (10163763)
Jan Pieter Abrahams (1429531)
Lennart Schada von Borzyskowski (22683583)
Gilles P. van Wezel (7838948)
author_role author
dc.creator.none.fl_str_mv Chao Li (145513)
Mia Urem (22683580)
Ioli Kotsogianni (9930187)
Josephine Lau (20442343)
Chao Du (288036)
Somayah S. Elsayed (9192571)
Nathaniel I. Martin (847378)
Iain W. McNae (840777)
Patrick Voskamp (2311429)
Christoph Mayer (57204)
Sébastien Rigali (724082)
Navraj Pannu (10163763)
Jan Pieter Abrahams (1429531)
Lennart Schada von Borzyskowski (22683583)
Gilles P. van Wezel (7838948)
dc.date.none.fl_str_mv 2025-11-25T19:00:36Z
dc.identifier.none.fl_str_mv 10.1371/journal.pbio.3003514.g004
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Analysis_of_the_binding_site_of_NagS_and_activity_of_NagS_mutants_/30715208
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Microbiology
Ecology
Developmental Biology
Inorganic Chemistry
Biological Sciences not elsewhere classified
controls nutrient signaling
also revealed 6
highlighted key residues
glcnac sensing requires
toxicity pathway dependent
6p deacetylase naga
novel glcnac 6
key role
substrate glcnac
novel enzyme
work uncovers
wall leads
unprecedented reaction
substrate mycelium
structural analogue
streptomycetaceae </
streptomyces </
revolves around
promiscuous activity
nature ’
n </
multicellular lifestyle
metabolic checkpoint
medicine makers
lytic dismantling
landmark event
hyphal cell
highly conserved
growth media
function analysis
clinical antibiotics
central metabolism
catalytic inhibitor
antibiotic production
active site
>- acetylglucosamine
6p dehydratase
dc.title.none.fl_str_mv Analysis of the binding site of NagS and activity of NagS mutants.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p><b>(a)</b> NagS active site with bound GlcNAc-6P (gray carbons), protein residues are coloured with pale blue and yellow carbons to indicate the 2 monomers forming the active site. 2|Fo|-|Fc| electron density contoured at 1.2 σ is shown as cyan mesh. Hydrogen bonds are indicated by dashed yellow lines. <b>(b)</b> GlcNAc-6P binding site of NagS, with hydrogen bonding distances, or distances between hydrogens and hydrogen bond acceptors indicated. The other molecule of the dimer contributes amino acids ArgB64, AlaB65, GlyB227, and AsnB228. The inset indicates the likely electron rearrangements required for ring-opening, the first step of catalysis. <b>(c)</b> Putative transition state after ring-opening, prior to rotations about the C5–C6 and C1–C2 bonds of GlcNAC-6P (indicated in red), that presumably precede subsequent ring closing. These rotations are associated with the rearrangement of hydrogen bonds. This likely requires conformational changes that in the crystal are inhibited by crystal contacts, explaining why the crystals are not enzymatically active. <b>(d)</b> NagS active site with bound 6-phosphogluconate (gray carbons), protein residues are coloured with pale blue and yellow carbons to indicate the 2 monomers forming the active site. 2|Fo|-|Fc| electron density contoured at 1.2 σ is shown as cyan mesh. <b>(e)</b> Hydrogen bonding distances observed in the 6-phosphogluconic-inhibited state of NagS. The inhibited state suggests how GlcNAc-6P rearranges upon ring-opening, and likely reflects the transition state prior to ring closing, which probably involves Ser91, Glu94, and AsnB228. <b>(f)</b> NagS enzyme activity in vivo. GlcNAc sensitivity of ∆<i>nagB</i>∆<i>nagS</i> harboring clones expressing NagS mutants H53A, S54A, R64A, S91A, E94A, S119A, S121A, D179A, or N228A were grown on MM agar supplemented with 1% mannitol (Mann) and 1% mannitol plus 10 mM GlcNAc (GlcNAc). Single colonies are most likely spontaneous suppressors. <b>(g)</b> In vitro activity (<i>V</i><sub>max</sub>) for wild-type NagS (WT) and NagS variants, with the substrate of GlcNAc-6P. The data underlying this Figure can be found in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.s022" target="_blank">S1 Data</a>.</p>
eu_rights_str_mv openAccess
id Manara_08a26adb205bb568579b1d0f2b72447f
identifier_str_mv 10.1371/journal.pbio.3003514.g004
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30715208
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Analysis of the binding site of NagS and activity of NagS mutants.Chao Li (145513)Mia Urem (22683580)Ioli Kotsogianni (9930187)Josephine Lau (20442343)Chao Du (288036)Somayah S. Elsayed (9192571)Nathaniel I. Martin (847378)Iain W. McNae (840777)Patrick Voskamp (2311429)Christoph Mayer (57204)Sébastien Rigali (724082)Navraj Pannu (10163763)Jan Pieter Abrahams (1429531)Lennart Schada von Borzyskowski (22683583)Gilles P. van Wezel (7838948)BiochemistryMicrobiologyEcologyDevelopmental BiologyInorganic ChemistryBiological Sciences not elsewhere classifiedcontrols nutrient signalingalso revealed 6highlighted key residuesglcnac sensing requirestoxicity pathway dependent6p deacetylase naganovel glcnac 6key rolesubstrate glcnacnovel enzymework uncoverswall leadsunprecedented reactionsubstrate myceliumstructural analoguestreptomycetaceae </streptomyces </revolves aroundpromiscuous activitynature ’n </multicellular lifestylemetabolic checkpointmedicine makerslytic dismantlinglandmark eventhyphal cellhighly conservedgrowth mediafunction analysisclinical antibioticscentral metabolismcatalytic inhibitorantibiotic productionactive site>- acetylglucosamine6p dehydratase<p><b>(a)</b> NagS active site with bound GlcNAc-6P (gray carbons), protein residues are coloured with pale blue and yellow carbons to indicate the 2 monomers forming the active site. 2|Fo|-|Fc| electron density contoured at 1.2 σ is shown as cyan mesh. Hydrogen bonds are indicated by dashed yellow lines. <b>(b)</b> GlcNAc-6P binding site of NagS, with hydrogen bonding distances, or distances between hydrogens and hydrogen bond acceptors indicated. The other molecule of the dimer contributes amino acids ArgB64, AlaB65, GlyB227, and AsnB228. The inset indicates the likely electron rearrangements required for ring-opening, the first step of catalysis. <b>(c)</b> Putative transition state after ring-opening, prior to rotations about the C5–C6 and C1–C2 bonds of GlcNAC-6P (indicated in red), that presumably precede subsequent ring closing. These rotations are associated with the rearrangement of hydrogen bonds. This likely requires conformational changes that in the crystal are inhibited by crystal contacts, explaining why the crystals are not enzymatically active. <b>(d)</b> NagS active site with bound 6-phosphogluconate (gray carbons), protein residues are coloured with pale blue and yellow carbons to indicate the 2 monomers forming the active site. 2|Fo|-|Fc| electron density contoured at 1.2 σ is shown as cyan mesh. <b>(e)</b> Hydrogen bonding distances observed in the 6-phosphogluconic-inhibited state of NagS. The inhibited state suggests how GlcNAc-6P rearranges upon ring-opening, and likely reflects the transition state prior to ring closing, which probably involves Ser91, Glu94, and AsnB228. <b>(f)</b> NagS enzyme activity in vivo. GlcNAc sensitivity of ∆<i>nagB</i>∆<i>nagS</i> harboring clones expressing NagS mutants H53A, S54A, R64A, S91A, E94A, S119A, S121A, D179A, or N228A were grown on MM agar supplemented with 1% mannitol (Mann) and 1% mannitol plus 10 mM GlcNAc (GlcNAc). Single colonies are most likely spontaneous suppressors. <b>(g)</b> In vitro activity (<i>V</i><sub>max</sub>) for wild-type NagS (WT) and NagS variants, with the substrate of GlcNAc-6P. The data underlying this Figure can be found in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003514#pbio.3003514.s022" target="_blank">S1 Data</a>.</p>2025-11-25T19:00:36ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pbio.3003514.g004https://figshare.com/articles/figure/Analysis_of_the_binding_site_of_NagS_and_activity_of_NagS_mutants_/30715208CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307152082025-11-25T19:00:36Z
spellingShingle Analysis of the binding site of NagS and activity of NagS mutants.
Chao Li (145513)
Biochemistry
Microbiology
Ecology
Developmental Biology
Inorganic Chemistry
Biological Sciences not elsewhere classified
controls nutrient signaling
also revealed 6
highlighted key residues
glcnac sensing requires
toxicity pathway dependent
6p deacetylase naga
novel glcnac 6
key role
substrate glcnac
novel enzyme
work uncovers
wall leads
unprecedented reaction
substrate mycelium
structural analogue
streptomycetaceae </
streptomyces </
revolves around
promiscuous activity
nature ’
n </
multicellular lifestyle
metabolic checkpoint
medicine makers
lytic dismantling
landmark event
hyphal cell
highly conserved
growth media
function analysis
clinical antibiotics
central metabolism
catalytic inhibitor
antibiotic production
active site
>- acetylglucosamine
6p dehydratase
status_str publishedVersion
title Analysis of the binding site of NagS and activity of NagS mutants.
title_full Analysis of the binding site of NagS and activity of NagS mutants.
title_fullStr Analysis of the binding site of NagS and activity of NagS mutants.
title_full_unstemmed Analysis of the binding site of NagS and activity of NagS mutants.
title_short Analysis of the binding site of NagS and activity of NagS mutants.
title_sort Analysis of the binding site of NagS and activity of NagS mutants.
topic Biochemistry
Microbiology
Ecology
Developmental Biology
Inorganic Chemistry
Biological Sciences not elsewhere classified
controls nutrient signaling
also revealed 6
highlighted key residues
glcnac sensing requires
toxicity pathway dependent
6p deacetylase naga
novel glcnac 6
key role
substrate glcnac
novel enzyme
work uncovers
wall leads
unprecedented reaction
substrate mycelium
structural analogue
streptomycetaceae </
streptomyces </
revolves around
promiscuous activity
nature ’
n </
multicellular lifestyle
metabolic checkpoint
medicine makers
lytic dismantling
landmark event
hyphal cell
highly conserved
growth media
function analysis
clinical antibiotics
central metabolism
catalytic inhibitor
antibiotic production
active site
>- acetylglucosamine
6p dehydratase