Positron reconstruction images.
<div><p>Positron imaging has shown great potential in industrial non-destructive testing due to its high sensitivity and ability to reveal internal structures of complex components. However, reconstructing high-quality images from positron emission data remains challenging, particularly...
Saved in:
| Main Author: | |
|---|---|
| Other Authors: | , |
| Published: |
2025
|
| Subjects: | |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | <div><p>Positron imaging has shown great potential in industrial non-destructive testing due to its high sensitivity and ability to reveal internal structures of complex components. However, reconstructing high-quality images from positron emission data remains challenging, particularly under limited sampling and ill-posed inverse problems, which are common in applications such as closed cavity detection. To address this, we propose an iterative reconstruction method for industrial positron images based on a generative adversarial network (PIIR-GAN). The method integrates a generative adversarial framework with a self-attention mechanism to exploit prior information and improve image quality under low-sample conditions. A key innovation is embedding the neural network model directly into the iterative reconstruction process, enabling end-to-end learning. Furthermore, a likelihood-based constraint is incorporated into the objective function to guide optimization. Experimental results on a GATE simulation dataset show significant improvements in both PSNR and SSIM compared with conventional methods, and real-world industrial defect detection further verifies the effectiveness of the approach.</p></div> |
|---|