Skip to content
VuFind
  • 登录
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
高级检索
  • Comparison of performance of f...
  • 引用
  • 发送短信
  • 推荐此
  • 打印
  • 导出纪录
    • 导出到 RefWorks
    • 导出到 EndNoteWeb
    • 导出到 EndNote
  • 加到收藏夹
  • Permanent link
Comparison of performance of four machine learning models for early graft loss prediction.

Comparison of performance of four machine learning models for early graft loss prediction.

<p>Comparison of performance of four machine learning models for early graft loss prediction.</p>

Saved in:
书目详细资料
主要作者: Raiki Yoshimura (22676573) (author)
其他作者: Naotoshi Nakamura (12083048) (author), Takeru Matsuura (22676576) (author), Takeo Toshima (13988776) (author), Takasuke Fukuhara (673475) (author), Kazuyuki Aihara (44090) (author), Katsuhito Fujiu (559488) (author), Shingo Iwami (266092) (author), Tomoharu Yoshizumi (2621434) (author)
出版: 2025
主题:
Medicine
urgent need exists
stage liver disease
shorter waiting times
recent years thanks
populations using data
model enabled us
highly heterogeneous sample
appropriate patient care
30 days postoperatively
distinct population similar
different survival times
hierarchical prediction method
better graft quality
survival time
loss population
graft loss
better performance
unexpected infections
transplanted organ
three groups
several models
next categorized
mediated rejection
loss groups
loss group
living donors
gained importance
five groups
conventional models
标签: 添加标签
没有标签, 成为第一个标记此记录!
  • 持有资料
  • 实物特征
  • 您的评论
  • 相似书籍
  • 职员浏览

相似书籍

  • Prediction of early graft loss at the individual level and identification of crucial factors: (A) Survival curves for all patients who experienced graft loss are plotted.
    由: Raiki Yoshimura (22676573)
    出版: (2025)
  • Comparison of performance of four machine learning models for long-term graft loss prediction.
    由: Raiki Yoshimura (22676573)
    出版: (2025)
  • Stratification and characterization of groups showing different graft survival: (A) UMAP visualization of the stratified derivation cohort data based on the distance matrix from the RF clustering.
    由: Raiki Yoshimura (22676573)
    出版: (2025)
  • Comparison of hierarchical classifier performance among four machine learning models for the early-loss, intermediate-loss, and late/no-loss groups.
    由: Raiki Yoshimura (22676573)
    出版: (2025)
  • Comparison of multi-class classifier performance among four machine learning models for early-loss, intermediate-loss, and late/no-loss groups.
    由: Raiki Yoshimura (22676573)
    出版: (2025)

检索选项

  • 检索历史
  • 高级检索

查找更多

  • 浏览目录
  • 按字母顺序浏览
  • 探索频道
  • 课程储备
  • 新项目

需要帮助?

  • 检索技巧
  • 咨询台
  • 常见问题
Cannot write session to /tmp/vufind_sessions/sess_un36f5dra5jpeuejvnae401oi3