Crystallization Control of Anionic Thiacalixarenes on Silicon Surface Coated with Cationic Poly(ethyleneimine)

Surface modification of solid substrates with organic molecules and polyelectrolytes is a promising strategy toward advanced soft materials due to the control of molecular arrangement and supramolecular organization; however, understanding the nature of interactions within the assembly is challengin...

Full description

Saved in:
Bibliographic Details
Main Author: Anna A. Botnar (20146291) (author)
Other Authors: Oleg P. Novikov (20146294) (author), Oleg A. Korepanov (20146297) (author), Ekaterina A. Muraveva (20146300) (author), Dmitry A. Kozodaev (16650593) (author), Alexander S. Novikov (1616380) (author), Michael Nosonovsky (2501176) (author), Ekaterina V. Skorb (2060947) (author), Anton A. Muravev (20146303) (author)
Published: 2024
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852025330490933248
author Anna A. Botnar (20146291)
author2 Oleg P. Novikov (20146294)
Oleg A. Korepanov (20146297)
Ekaterina A. Muraveva (20146300)
Dmitry A. Kozodaev (16650593)
Alexander S. Novikov (1616380)
Michael Nosonovsky (2501176)
Ekaterina V. Skorb (2060947)
Anton A. Muravev (20146303)
author2_role author
author
author
author
author
author
author
author
author_facet Anna A. Botnar (20146291)
Oleg P. Novikov (20146294)
Oleg A. Korepanov (20146297)
Ekaterina A. Muraveva (20146300)
Dmitry A. Kozodaev (16650593)
Alexander S. Novikov (1616380)
Michael Nosonovsky (2501176)
Ekaterina V. Skorb (2060947)
Anton A. Muravev (20146303)
author_role author
dc.creator.none.fl_str_mv Anna A. Botnar (20146291)
Oleg P. Novikov (20146294)
Oleg A. Korepanov (20146297)
Ekaterina A. Muraveva (20146300)
Dmitry A. Kozodaev (16650593)
Alexander S. Novikov (1616380)
Michael Nosonovsky (2501176)
Ekaterina V. Skorb (2060947)
Anton A. Muravev (20146303)
dc.date.none.fl_str_mv 2024-11-08T12:20:32Z
dc.identifier.none.fl_str_mv 10.1021/acs.langmuir.4c03488.s003
dc.relation.none.fl_str_mv https://figshare.com/articles/media/Crystallization_Control_of_Anionic_Thiacalixarenes_on_Silicon_Surface_Coated_with_Cationic_Poly_ethyleneimine_/27636715
dc.rights.none.fl_str_mv CC BY-NC 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biotechnology
Cancer
Inorganic Chemistry
Computational Biology
Chemical Sciences not elsewhere classified
Physical Sciences not elsewhere classified
face antiparallel aggregation
dense uniform fiber
atomic force microscopy
4 ]­ arene
weak interactions involving
like structure alters
silicon wafers modified
solid silicon substrate
cationic polyelectrolyte layer
silicon surface coated
pei ­( pei
polyelectrolyte surface
like network
interactions within
cationic pei
silicon surfaces
surface modification
cationic poly
protonated pei
globular pei
topological analysis
system components
solid substrates
soft surfaces
rosette structures
organic molecules
nucleation point
neutral polyethylenimine
molecular arrangement
facile approach
calixarene macrocycles
anionic thiacalixarenes
anionic sulfonatothiacalix
dc.title.none.fl_str_mv Crystallization Control of Anionic Thiacalixarenes on Silicon Surface Coated with Cationic Poly(ethyleneimine)
dc.type.none.fl_str_mv Dataset
Media
info:eu-repo/semantics/publishedVersion
dataset
description Surface modification of solid substrates with organic molecules and polyelectrolytes is a promising strategy toward advanced soft materials due to the control of molecular arrangement and supramolecular organization; however, understanding the nature of interactions within the assembly is challenging. Here a facile approach to the control of the architecture of calixarene macrocycles on soft surfaces is presented through the interplay of weak interactions involving a solid silicon substrate, a cationic polyelectrolyte layer, and anionic sulfonatothiacalix[4]­arene (STCA). Topological analysis of atomic force microscopy (AFM) images of STCA on silicon, as well as silicon wafers modified with neutral polyethylenimine (PEI) and cationic PEI-H<sup>+</sup>, indicates different surface morphology and assembly behavior of STCA on such substrates. Drop-casting a calixarene solution onto silicon induces the formation of chaotically oriented needle crystals. When there is globular PEI, a nucleation point for the STCA crystals is formed on the polyelectrolyte surface, which grows into rosette structures. In contrast, protonated PEI with a chain-like structure alters the self-organization of STCA on silicon surfaces, leading to a dense uniform fiber-like network. Density functional theory modeling of the system components' self-assembly reveals thermodynamically favorable face-to-face antiparallel aggregation of STCA monomers and contribution of H-bonding into PEI­(PEI-H<sup>+</sup>)–STCA and Si–STCA association.
eu_rights_str_mv openAccess
id Manara_0cc470cd0a2ea5bf1e652e21782da3da
identifier_str_mv 10.1021/acs.langmuir.4c03488.s003
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/27636715
publishDate 2024
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY-NC 4.0
spelling Crystallization Control of Anionic Thiacalixarenes on Silicon Surface Coated with Cationic Poly(ethyleneimine)Anna A. Botnar (20146291)Oleg P. Novikov (20146294)Oleg A. Korepanov (20146297)Ekaterina A. Muraveva (20146300)Dmitry A. Kozodaev (16650593)Alexander S. Novikov (1616380)Michael Nosonovsky (2501176)Ekaterina V. Skorb (2060947)Anton A. Muravev (20146303)BiotechnologyCancerInorganic ChemistryComputational BiologyChemical Sciences not elsewhere classifiedPhysical Sciences not elsewhere classifiedface antiparallel aggregationdense uniform fiberatomic force microscopy4 ]­ areneweak interactions involvinglike structure alterssilicon wafers modifiedsolid silicon substratecationic polyelectrolyte layersilicon surface coatedpei ­( peipolyelectrolyte surfacelike networkinteractions withincationic peisilicon surfacessurface modificationcationic polyprotonated peiglobular peitopological analysissystem componentssolid substratessoft surfacesrosette structuresorganic moleculesnucleation pointneutral polyethyleniminemolecular arrangementfacile approachcalixarene macrocyclesanionic thiacalixarenesanionic sulfonatothiacalixSurface modification of solid substrates with organic molecules and polyelectrolytes is a promising strategy toward advanced soft materials due to the control of molecular arrangement and supramolecular organization; however, understanding the nature of interactions within the assembly is challenging. Here a facile approach to the control of the architecture of calixarene macrocycles on soft surfaces is presented through the interplay of weak interactions involving a solid silicon substrate, a cationic polyelectrolyte layer, and anionic sulfonatothiacalix[4]­arene (STCA). Topological analysis of atomic force microscopy (AFM) images of STCA on silicon, as well as silicon wafers modified with neutral polyethylenimine (PEI) and cationic PEI-H<sup>+</sup>, indicates different surface morphology and assembly behavior of STCA on such substrates. Drop-casting a calixarene solution onto silicon induces the formation of chaotically oriented needle crystals. When there is globular PEI, a nucleation point for the STCA crystals is formed on the polyelectrolyte surface, which grows into rosette structures. In contrast, protonated PEI with a chain-like structure alters the self-organization of STCA on silicon surfaces, leading to a dense uniform fiber-like network. Density functional theory modeling of the system components' self-assembly reveals thermodynamically favorable face-to-face antiparallel aggregation of STCA monomers and contribution of H-bonding into PEI­(PEI-H<sup>+</sup>)–STCA and Si–STCA association.2024-11-08T12:20:32ZDatasetMediainfo:eu-repo/semantics/publishedVersiondataset10.1021/acs.langmuir.4c03488.s003https://figshare.com/articles/media/Crystallization_Control_of_Anionic_Thiacalixarenes_on_Silicon_Surface_Coated_with_Cationic_Poly_ethyleneimine_/27636715CC BY-NC 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/276367152024-11-08T12:20:32Z
spellingShingle Crystallization Control of Anionic Thiacalixarenes on Silicon Surface Coated with Cationic Poly(ethyleneimine)
Anna A. Botnar (20146291)
Biotechnology
Cancer
Inorganic Chemistry
Computational Biology
Chemical Sciences not elsewhere classified
Physical Sciences not elsewhere classified
face antiparallel aggregation
dense uniform fiber
atomic force microscopy
4 ]­ arene
weak interactions involving
like structure alters
silicon wafers modified
solid silicon substrate
cationic polyelectrolyte layer
silicon surface coated
pei ­( pei
polyelectrolyte surface
like network
interactions within
cationic pei
silicon surfaces
surface modification
cationic poly
protonated pei
globular pei
topological analysis
system components
solid substrates
soft surfaces
rosette structures
organic molecules
nucleation point
neutral polyethylenimine
molecular arrangement
facile approach
calixarene macrocycles
anionic thiacalixarenes
anionic sulfonatothiacalix
status_str publishedVersion
title Crystallization Control of Anionic Thiacalixarenes on Silicon Surface Coated with Cationic Poly(ethyleneimine)
title_full Crystallization Control of Anionic Thiacalixarenes on Silicon Surface Coated with Cationic Poly(ethyleneimine)
title_fullStr Crystallization Control of Anionic Thiacalixarenes on Silicon Surface Coated with Cationic Poly(ethyleneimine)
title_full_unstemmed Crystallization Control of Anionic Thiacalixarenes on Silicon Surface Coated with Cationic Poly(ethyleneimine)
title_short Crystallization Control of Anionic Thiacalixarenes on Silicon Surface Coated with Cationic Poly(ethyleneimine)
title_sort Crystallization Control of Anionic Thiacalixarenes on Silicon Surface Coated with Cationic Poly(ethyleneimine)
topic Biotechnology
Cancer
Inorganic Chemistry
Computational Biology
Chemical Sciences not elsewhere classified
Physical Sciences not elsewhere classified
face antiparallel aggregation
dense uniform fiber
atomic force microscopy
4 ]­ arene
weak interactions involving
like structure alters
silicon wafers modified
solid silicon substrate
cationic polyelectrolyte layer
silicon surface coated
pei ­( pei
polyelectrolyte surface
like network
interactions within
cationic pei
silicon surfaces
surface modification
cationic poly
protonated pei
globular pei
topological analysis
system components
solid substrates
soft surfaces
rosette structures
organic molecules
nucleation point
neutral polyethylenimine
molecular arrangement
facile approach
calixarene macrocycles
anionic thiacalixarenes
anionic sulfonatothiacalix