The RMSEs of the predicted and measured strain values.

<p>The RMSEs of the predicted and measured strain values.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Yanqing Men (20283876) (author)
مؤلفون آخرون: Hu Li (130600) (author), Fengzhou Liu (16848231) (author), Yongliang Huang (1731505) (author), Mingxin Gao (502701) (author), Xiaohui Wang (19899) (author), Hao Xie (406287) (author), Jianxin Cao (4180960) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852019705780371456
author Yanqing Men (20283876)
author2 Hu Li (130600)
Fengzhou Liu (16848231)
Yongliang Huang (1731505)
Mingxin Gao (502701)
Xiaohui Wang (19899)
Hao Xie (406287)
Jianxin Cao (4180960)
author2_role author
author
author
author
author
author
author
author_facet Yanqing Men (20283876)
Hu Li (130600)
Fengzhou Liu (16848231)
Yongliang Huang (1731505)
Mingxin Gao (502701)
Xiaohui Wang (19899)
Hao Xie (406287)
Jianxin Cao (4180960)
author_role author
dc.creator.none.fl_str_mv Yanqing Men (20283876)
Hu Li (130600)
Fengzhou Liu (16848231)
Yongliang Huang (1731505)
Mingxin Gao (502701)
Xiaohui Wang (19899)
Hao Xie (406287)
Jianxin Cao (4180960)
dc.date.none.fl_str_mv 2025-06-03T17:50:00Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0324816.t002
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/The_RMSEs_of_the_predicted_and_measured_strain_values_/29228600
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Biotechnology
Immunology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
various coupled effects
singular value decomposition
time adaptive thresholds
decomposed monitoring data
bridge structural safety
monitoring data based
leveraging data reconstruction
data reconstruction
time detection
structural response
bridge structures
based prediction
measured data
xlink ">
warning system
warning method
thereby decoupling
term memory
study proposes
significant difficulty
prediction model
influencing factors
enabling real
effectively detecting
dynamic early
deep learning
contribution rate
complex interplay
calculates real
bridges involves
dc.title.none.fl_str_mv The RMSEs of the predicted and measured strain values.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>The RMSEs of the predicted and measured strain values.</p>
eu_rights_str_mv openAccess
id Manara_0ec3c98f62041c782824c06e976203ea
identifier_str_mv 10.1371/journal.pone.0324816.t002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29228600
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling The RMSEs of the predicted and measured strain values.Yanqing Men (20283876)Hu Li (130600)Fengzhou Liu (16848231)Yongliang Huang (1731505)Mingxin Gao (502701)Xiaohui Wang (19899)Hao Xie (406287)Jianxin Cao (4180960)BiochemistryBiotechnologyImmunologyBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedvarious coupled effectssingular value decompositiontime adaptive thresholdsdecomposed monitoring databridge structural safetymonitoring data basedleveraging data reconstructiondata reconstructiontime detectionstructural responsebridge structuresbased predictionmeasured dataxlink ">warning systemwarning methodthereby decouplingterm memorystudy proposessignificant difficultyprediction modelinfluencing factorsenabling realeffectively detectingdynamic earlydeep learningcontribution ratecomplex interplaycalculates realbridges involves<p>The RMSEs of the predicted and measured strain values.</p>2025-06-03T17:50:00ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0324816.t002https://figshare.com/articles/dataset/The_RMSEs_of_the_predicted_and_measured_strain_values_/29228600CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/292286002025-06-03T17:50:00Z
spellingShingle The RMSEs of the predicted and measured strain values.
Yanqing Men (20283876)
Biochemistry
Biotechnology
Immunology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
various coupled effects
singular value decomposition
time adaptive thresholds
decomposed monitoring data
bridge structural safety
monitoring data based
leveraging data reconstruction
data reconstruction
time detection
structural response
bridge structures
based prediction
measured data
xlink ">
warning system
warning method
thereby decoupling
term memory
study proposes
significant difficulty
prediction model
influencing factors
enabling real
effectively detecting
dynamic early
deep learning
contribution rate
complex interplay
calculates real
bridges involves
status_str publishedVersion
title The RMSEs of the predicted and measured strain values.
title_full The RMSEs of the predicted and measured strain values.
title_fullStr The RMSEs of the predicted and measured strain values.
title_full_unstemmed The RMSEs of the predicted and measured strain values.
title_short The RMSEs of the predicted and measured strain values.
title_sort The RMSEs of the predicted and measured strain values.
topic Biochemistry
Biotechnology
Immunology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
various coupled effects
singular value decomposition
time adaptive thresholds
decomposed monitoring data
bridge structural safety
monitoring data based
leveraging data reconstruction
data reconstruction
time detection
structural response
bridge structures
based prediction
measured data
xlink ">
warning system
warning method
thereby decoupling
term memory
study proposes
significant difficulty
prediction model
influencing factors
enabling real
effectively detecting
dynamic early
deep learning
contribution rate
complex interplay
calculates real
bridges involves