ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.

<p>ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.</p>

Saved in:
Bibliografiske detaljer
Hovedforfatter: Uğur Ejder (22683228) (author)
Andre forfattere: Pınar Uskaner Hepsağ (22683231) (author)
Udgivet: 2025
Fag:
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!
_version_ 1849927629677789184
author Uğur Ejder (22683228)
author2 Pınar Uskaner Hepsağ (22683231)
author2_role author
author_facet Uğur Ejder (22683228)
Pınar Uskaner Hepsağ (22683231)
author_role author
dc.creator.none.fl_str_mv Uğur Ejder (22683228)
Pınar Uskaner Hepsağ (22683231)
dc.date.none.fl_str_mv 2025-11-25T18:24:03Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0336846.g008
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/ROC_and_PR_AUC_curves_of_the_ABC_LR_RF_hybrid_model_for_IVF_outcome_prediction_/30713274
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biotechnology
Ecology
Cancer
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
small sample size
lr &# 8211
evaluated using 5
assisted reproductive technologies
artificial bee colony
art ), yet
address class imbalance
support vector machine
pharmaceutical supplement use
enhance predictive performance
abc hybrids outperformed
abc hybrid counterparts
local interpretable model
abc hybrid model
model performance
supplement variables
producing interpretable
dietician support
vitro fertilization
synthetic minority
studies rely
sampling technique
retrospective dataset
regression tree
random forest
observed improvements
nearest neighbors
limited optimization
influential features
individual predictions
improving prediction
implemented alongside
future studies
four algorithms
folic acid
fold cross
exploratory rather
dietary data
conventional algorithms
concept study
clinically directive
binary representation
baseline models
algorithm models
agnostic explanations
accuracy ).
21 predictors
dc.title.none.fl_str_mv ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.</p>
eu_rights_str_mv openAccess
id Manara_0fcd295843580aa7123d13591c3ffb09
identifier_str_mv 10.1371/journal.pone.0336846.g008
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30713274
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.Uğur Ejder (22683228)Pınar Uskaner Hepsağ (22683231)BiotechnologyEcologyCancerBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedsmall sample sizelr &# 8211evaluated using 5assisted reproductive technologiesartificial bee colonyart ), yetaddress class imbalancesupport vector machinepharmaceutical supplement useenhance predictive performanceabc hybrids outperformedabc hybrid counterpartslocal interpretable modelabc hybrid modelmodel performancesupplement variablesproducing interpretabledietician supportvitro fertilizationsynthetic minoritystudies relysampling techniqueretrospective datasetregression treerandom forestobserved improvementsnearest neighborslimited optimizationinfluential featuresindividual predictionsimproving predictionimplemented alongsidefuture studiesfour algorithmsfolic acidfold crossexploratory ratherdietary dataconventional algorithmsconcept studyclinically directivebinary representationbaseline modelsalgorithm modelsagnostic explanationsaccuracy ).21 predictors<p>ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.</p>2025-11-25T18:24:03ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0336846.g008https://figshare.com/articles/figure/ROC_and_PR_AUC_curves_of_the_ABC_LR_RF_hybrid_model_for_IVF_outcome_prediction_/30713274CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307132742025-11-25T18:24:03Z
spellingShingle ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.
Uğur Ejder (22683228)
Biotechnology
Ecology
Cancer
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
small sample size
lr &# 8211
evaluated using 5
assisted reproductive technologies
artificial bee colony
art ), yet
address class imbalance
support vector machine
pharmaceutical supplement use
enhance predictive performance
abc hybrids outperformed
abc hybrid counterparts
local interpretable model
abc hybrid model
model performance
supplement variables
producing interpretable
dietician support
vitro fertilization
synthetic minority
studies rely
sampling technique
retrospective dataset
regression tree
random forest
observed improvements
nearest neighbors
limited optimization
influential features
individual predictions
improving prediction
implemented alongside
future studies
four algorithms
folic acid
fold cross
exploratory rather
dietary data
conventional algorithms
concept study
clinically directive
binary representation
baseline models
algorithm models
agnostic explanations
accuracy ).
21 predictors
status_str publishedVersion
title ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.
title_full ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.
title_fullStr ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.
title_full_unstemmed ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.
title_short ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.
title_sort ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.
topic Biotechnology
Ecology
Cancer
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
small sample size
lr &# 8211
evaluated using 5
assisted reproductive technologies
artificial bee colony
art ), yet
address class imbalance
support vector machine
pharmaceutical supplement use
enhance predictive performance
abc hybrids outperformed
abc hybrid counterparts
local interpretable model
abc hybrid model
model performance
supplement variables
producing interpretable
dietician support
vitro fertilization
synthetic minority
studies rely
sampling technique
retrospective dataset
regression tree
random forest
observed improvements
nearest neighbors
limited optimization
influential features
individual predictions
improving prediction
implemented alongside
future studies
four algorithms
folic acid
fold cross
exploratory rather
dietary data
conventional algorithms
concept study
clinically directive
binary representation
baseline models
algorithm models
agnostic explanations
accuracy ).
21 predictors