Distribution of paired serological data that fall into probability buckets when using Model 9 (incorporating paired IgG, IgM, GM HAI, and acute GM HAI serological data) and the number of serological assays (RT-PCR, HAI, and EIA) that interpret the individual as having an infection.

<p>Distribution of paired serological data that fall into probability buckets when using Model 9 (incorporating paired IgG, IgM, GM HAI, and acute GM HAI serological data) and the number of serological assays (RT-PCR, HAI, and EIA) that interpret the individual as having an infection.</p>...

Ful tanımlama

Kaydedildi:
Detaylı Bibliyografya
Yazar: Marco Hamins-Puértolas (15238661) (author)
Diğer Yazarlar: Darunee Buddhari (625855) (author), Henrik Salje (589157) (author), Angkana T. Huang (12262139) (author), Taweewun Hunsawong (798675) (author), Derek A.T. Cummings (14971341) (author), Stefan Fernandez (146590) (author), Aaron Farmer (4288318) (author), Surachai Kaewhiran (22683535) (author), Direk Khampaen (22683538) (author), Anon Srikiatkhachorn (110184) (author), Sopon Iamsirithaworn (260152) (author), Adam Waickman (118668) (author), Stephen J. Thomas (7105673) (author), Timothy Endy (150971) (author), Alan L. Rothman (6835178) (author), Kathryn B. Anderson (6835166) (author), Isabel Rodriguez-Barraquer (233670) (author)
Baskı/Yayın Bilgisi: 2025
Konular:
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
_version_ 1849927625856778240
author Marco Hamins-Puértolas (15238661)
author2 Darunee Buddhari (625855)
Henrik Salje (589157)
Angkana T. Huang (12262139)
Taweewun Hunsawong (798675)
Derek A.T. Cummings (14971341)
Stefan Fernandez (146590)
Aaron Farmer (4288318)
Surachai Kaewhiran (22683535)
Direk Khampaen (22683538)
Anon Srikiatkhachorn (110184)
Sopon Iamsirithaworn (260152)
Adam Waickman (118668)
Stephen J. Thomas (7105673)
Timothy Endy (150971)
Alan L. Rothman (6835178)
Kathryn B. Anderson (6835166)
Isabel Rodriguez-Barraquer (233670)
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author_facet Marco Hamins-Puértolas (15238661)
Darunee Buddhari (625855)
Henrik Salje (589157)
Angkana T. Huang (12262139)
Taweewun Hunsawong (798675)
Derek A.T. Cummings (14971341)
Stefan Fernandez (146590)
Aaron Farmer (4288318)
Surachai Kaewhiran (22683535)
Direk Khampaen (22683538)
Anon Srikiatkhachorn (110184)
Sopon Iamsirithaworn (260152)
Adam Waickman (118668)
Stephen J. Thomas (7105673)
Timothy Endy (150971)
Alan L. Rothman (6835178)
Kathryn B. Anderson (6835166)
Isabel Rodriguez-Barraquer (233670)
author_role author
dc.creator.none.fl_str_mv Marco Hamins-Puértolas (15238661)
Darunee Buddhari (625855)
Henrik Salje (589157)
Angkana T. Huang (12262139)
Taweewun Hunsawong (798675)
Derek A.T. Cummings (14971341)
Stefan Fernandez (146590)
Aaron Farmer (4288318)
Surachai Kaewhiran (22683535)
Direk Khampaen (22683538)
Anon Srikiatkhachorn (110184)
Sopon Iamsirithaworn (260152)
Adam Waickman (118668)
Stephen J. Thomas (7105673)
Timothy Endy (150971)
Alan L. Rothman (6835178)
Kathryn B. Anderson (6835166)
Isabel Rodriguez-Barraquer (233670)
dc.date.none.fl_str_mv 2025-11-25T19:00:14Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1013708.s007
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Distribution_of_paired_serological_data_that_fall_into_probability_buckets_when_using_Model_9_incorporating_paired_IgG_IgM_GM_HAI_and_acute_GM_HAI_serological_data_and_the_number_of_serological_assays_RT-PCR_HAI_and_EIA_that_interpret_the_i/30715155
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Medicine
Biotechnology
Ecology
Immunology
Cancer
Science Policy
Infectious Diseases
Virology
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
since many cases
linked immunosorbent assay
independently utilize information
hemagglutination inhibition assay
globe &# 8217
currently implemented cut
convalescent serum collected
87 &# 8211
82 &# 8211
real world data
multiple serological assays
infer infection events
generate finalized interpretations
bayesian mixture model
prior standard interpretations
pcr confirmed infections
jointly model data
gold standard ).
f1 scores ).
hai data consistently
direct detection methods
gold standard
f1 scores
infection detection
eia ).
including data
individual assays
new model
igm data
whether individuals
transmission potential
results provide
recently experienced
provide insight
probabilistic framework
population living
point approaches
pathogen systems
kamphaeng phet
interpreting results
incorporating igg
important role
higher accuracy
first test
diagnostic process
creating uncertainty
combined metric
already half
677 pairs
dc.title.none.fl_str_mv Distribution of paired serological data that fall into probability buckets when using Model 9 (incorporating paired IgG, IgM, GM HAI, and acute GM HAI serological data) and the number of serological assays (RT-PCR, HAI, and EIA) that interpret the individual as having an infection.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Distribution of paired serological data that fall into probability buckets when using Model 9 (incorporating paired IgG, IgM, GM HAI, and acute GM HAI serological data) and the number of serological assays (RT-PCR, HAI, and EIA) that interpret the individual as having an infection.</p>
eu_rights_str_mv openAccess
id Manara_1e5ec8dd1c3df4526794ee1d65aca24b
identifier_str_mv 10.1371/journal.pcbi.1013708.s007
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30715155
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Distribution of paired serological data that fall into probability buckets when using Model 9 (incorporating paired IgG, IgM, GM HAI, and acute GM HAI serological data) and the number of serological assays (RT-PCR, HAI, and EIA) that interpret the individual as having an infection.Marco Hamins-Puértolas (15238661)Darunee Buddhari (625855)Henrik Salje (589157)Angkana T. Huang (12262139)Taweewun Hunsawong (798675)Derek A.T. Cummings (14971341)Stefan Fernandez (146590)Aaron Farmer (4288318)Surachai Kaewhiran (22683535)Direk Khampaen (22683538)Anon Srikiatkhachorn (110184)Sopon Iamsirithaworn (260152)Adam Waickman (118668)Stephen J. Thomas (7105673)Timothy Endy (150971)Alan L. Rothman (6835178)Kathryn B. Anderson (6835166)Isabel Rodriguez-Barraquer (233670)MedicineBiotechnologyEcologyImmunologyCancerScience PolicyInfectious DiseasesVirologyComputational BiologyBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedsince many caseslinked immunosorbent assayindependently utilize informationhemagglutination inhibition assayglobe &# 8217currently implemented cutconvalescent serum collected87 &# 821182 &# 8211real world datamultiple serological assaysinfer infection eventsgenerate finalized interpretationsbayesian mixture modelprior standard interpretationspcr confirmed infectionsjointly model datagold standard ).f1 scores ).hai data consistentlydirect detection methodsgold standardf1 scoresinfection detectioneia ).including dataindividual assaysnew modeligm datawhether individualstransmission potentialresults providerecently experiencedprovide insightprobabilistic frameworkpopulation livingpoint approachespathogen systemskamphaeng phetinterpreting resultsincorporating iggimportant rolehigher accuracyfirst testdiagnostic processcreating uncertaintycombined metricalready half677 pairs<p>Distribution of paired serological data that fall into probability buckets when using Model 9 (incorporating paired IgG, IgM, GM HAI, and acute GM HAI serological data) and the number of serological assays (RT-PCR, HAI, and EIA) that interpret the individual as having an infection.</p>2025-11-25T19:00:14ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pcbi.1013708.s007https://figshare.com/articles/dataset/Distribution_of_paired_serological_data_that_fall_into_probability_buckets_when_using_Model_9_incorporating_paired_IgG_IgM_GM_HAI_and_acute_GM_HAI_serological_data_and_the_number_of_serological_assays_RT-PCR_HAI_and_EIA_that_interpret_the_i/30715155CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307151552025-11-25T19:00:14Z
spellingShingle Distribution of paired serological data that fall into probability buckets when using Model 9 (incorporating paired IgG, IgM, GM HAI, and acute GM HAI serological data) and the number of serological assays (RT-PCR, HAI, and EIA) that interpret the individual as having an infection.
Marco Hamins-Puértolas (15238661)
Medicine
Biotechnology
Ecology
Immunology
Cancer
Science Policy
Infectious Diseases
Virology
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
since many cases
linked immunosorbent assay
independently utilize information
hemagglutination inhibition assay
globe &# 8217
currently implemented cut
convalescent serum collected
87 &# 8211
82 &# 8211
real world data
multiple serological assays
infer infection events
generate finalized interpretations
bayesian mixture model
prior standard interpretations
pcr confirmed infections
jointly model data
gold standard ).
f1 scores ).
hai data consistently
direct detection methods
gold standard
f1 scores
infection detection
eia ).
including data
individual assays
new model
igm data
whether individuals
transmission potential
results provide
recently experienced
provide insight
probabilistic framework
population living
point approaches
pathogen systems
kamphaeng phet
interpreting results
incorporating igg
important role
higher accuracy
first test
diagnostic process
creating uncertainty
combined metric
already half
677 pairs
status_str publishedVersion
title Distribution of paired serological data that fall into probability buckets when using Model 9 (incorporating paired IgG, IgM, GM HAI, and acute GM HAI serological data) and the number of serological assays (RT-PCR, HAI, and EIA) that interpret the individual as having an infection.
title_full Distribution of paired serological data that fall into probability buckets when using Model 9 (incorporating paired IgG, IgM, GM HAI, and acute GM HAI serological data) and the number of serological assays (RT-PCR, HAI, and EIA) that interpret the individual as having an infection.
title_fullStr Distribution of paired serological data that fall into probability buckets when using Model 9 (incorporating paired IgG, IgM, GM HAI, and acute GM HAI serological data) and the number of serological assays (RT-PCR, HAI, and EIA) that interpret the individual as having an infection.
title_full_unstemmed Distribution of paired serological data that fall into probability buckets when using Model 9 (incorporating paired IgG, IgM, GM HAI, and acute GM HAI serological data) and the number of serological assays (RT-PCR, HAI, and EIA) that interpret the individual as having an infection.
title_short Distribution of paired serological data that fall into probability buckets when using Model 9 (incorporating paired IgG, IgM, GM HAI, and acute GM HAI serological data) and the number of serological assays (RT-PCR, HAI, and EIA) that interpret the individual as having an infection.
title_sort Distribution of paired serological data that fall into probability buckets when using Model 9 (incorporating paired IgG, IgM, GM HAI, and acute GM HAI serological data) and the number of serological assays (RT-PCR, HAI, and EIA) that interpret the individual as having an infection.
topic Medicine
Biotechnology
Ecology
Immunology
Cancer
Science Policy
Infectious Diseases
Virology
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
since many cases
linked immunosorbent assay
independently utilize information
hemagglutination inhibition assay
globe &# 8217
currently implemented cut
convalescent serum collected
87 &# 8211
82 &# 8211
real world data
multiple serological assays
infer infection events
generate finalized interpretations
bayesian mixture model
prior standard interpretations
pcr confirmed infections
jointly model data
gold standard ).
f1 scores ).
hai data consistently
direct detection methods
gold standard
f1 scores
infection detection
eia ).
including data
individual assays
new model
igm data
whether individuals
transmission potential
results provide
recently experienced
provide insight
probabilistic framework
population living
point approaches
pathogen systems
kamphaeng phet
interpreting results
incorporating igg
important role
higher accuracy
first test
diagnostic process
creating uncertainty
combined metric
already half
677 pairs