Simulation environmental setting with a    grid map, and human number .

<p>Simulation environmental setting with a    grid map, and human number .</p>

Saved in:
Bibliographic Details
Main Author: Jian Mi (21533502) (author)
Other Authors: Xianbo Zhang (4113475) (author), Zhongjie Long (13927368) (author), Jun Wang (5906) (author), Wei Xu (28953) (author), Yue Xu (246925) (author), Shejun Deng (9674246) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852019360669892608
author Jian Mi (21533502)
author2 Xianbo Zhang (4113475)
Zhongjie Long (13927368)
Jun Wang (5906)
Wei Xu (28953)
Yue Xu (246925)
Shejun Deng (9674246)
author2_role author
author
author
author
author
author
author_facet Jian Mi (21533502)
Xianbo Zhang (4113475)
Zhongjie Long (13927368)
Jun Wang (5906)
Wei Xu (28953)
Yue Xu (246925)
Shejun Deng (9674246)
author_role author
dc.creator.none.fl_str_mv Jian Mi (21533502)
Xianbo Zhang (4113475)
Zhongjie Long (13927368)
Jun Wang (5906)
Wei Xu (28953)
Yue Xu (246925)
Shejun Deng (9674246)
dc.date.none.fl_str_mv 2025-06-12T17:37:27Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0324534.g007
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Simulation_environmental_setting_with_a_grid_map_and_human_number_/29308626
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Sociology
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
task success rate
simulation results demonstrate
reinforcement learning method
randomly moving humans
generating optimal paths
distinct task number
time collision avoidance
novel safe approach
safe path rather
safe path planning
path planning problem
planning level instead
mobile robot designing
including conflict number
evaluate fsars based
dynamic environments remains
safe path
mobile robot
dynamic environments
shortest path
safe planner
safe operation
computational time
challenging problem
conflict distribution
average conflict
human number
structure aims
several metrics
paper focuses
multiple tasks
merely seeking
lowest collisions
level implements
grid size
fsars reduces
environmental settings
avoiding collisions
dc.title.none.fl_str_mv Simulation environmental setting with a    grid map, and human number .
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Simulation environmental setting with a    grid map, and human number .</p>
eu_rights_str_mv openAccess
id Manara_2424ef36bec1210a7d87dfdfd2df7dc5
identifier_str_mv 10.1371/journal.pone.0324534.g007
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29308626
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Simulation environmental setting with a    grid map, and human number .Jian Mi (21533502)Xianbo Zhang (4113475)Zhongjie Long (13927368)Jun Wang (5906)Wei Xu (28953)Yue Xu (246925)Shejun Deng (9674246)SociologyScience PolicySpace ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedtask success ratesimulation results demonstratereinforcement learning methodrandomly moving humansgenerating optimal pathsdistinct task numbertime collision avoidancenovel safe approachsafe path rathersafe path planningpath planning problemplanning level insteadmobile robot designingincluding conflict numberevaluate fsars baseddynamic environments remainssafe pathmobile robotdynamic environmentsshortest pathsafe plannersafe operationcomputational timechallenging problemconflict distributionaverage conflicthuman numberstructure aimsseveral metricspaper focusesmultiple tasksmerely seekinglowest collisionslevel implementsgrid sizefsars reducesenvironmental settingsavoiding collisions<p>Simulation environmental setting with a    grid map, and human number .</p>2025-06-12T17:37:27ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0324534.g007https://figshare.com/articles/figure/Simulation_environmental_setting_with_a_grid_map_and_human_number_/29308626CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/293086262025-06-12T17:37:27Z
spellingShingle Simulation environmental setting with a    grid map, and human number .
Jian Mi (21533502)
Sociology
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
task success rate
simulation results demonstrate
reinforcement learning method
randomly moving humans
generating optimal paths
distinct task number
time collision avoidance
novel safe approach
safe path rather
safe path planning
path planning problem
planning level instead
mobile robot designing
including conflict number
evaluate fsars based
dynamic environments remains
safe path
mobile robot
dynamic environments
shortest path
safe planner
safe operation
computational time
challenging problem
conflict distribution
average conflict
human number
structure aims
several metrics
paper focuses
multiple tasks
merely seeking
lowest collisions
level implements
grid size
fsars reduces
environmental settings
avoiding collisions
status_str publishedVersion
title Simulation environmental setting with a    grid map, and human number .
title_full Simulation environmental setting with a    grid map, and human number .
title_fullStr Simulation environmental setting with a    grid map, and human number .
title_full_unstemmed Simulation environmental setting with a    grid map, and human number .
title_short Simulation environmental setting with a    grid map, and human number .
title_sort Simulation environmental setting with a    grid map, and human number .
topic Sociology
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
task success rate
simulation results demonstrate
reinforcement learning method
randomly moving humans
generating optimal paths
distinct task number
time collision avoidance
novel safe approach
safe path rather
safe path planning
path planning problem
planning level instead
mobile robot designing
including conflict number
evaluate fsars based
dynamic environments remains
safe path
mobile robot
dynamic environments
shortest path
safe planner
safe operation
computational time
challenging problem
conflict distribution
average conflict
human number
structure aims
several metrics
paper focuses
multiple tasks
merely seeking
lowest collisions
level implements
grid size
fsars reduces
environmental settings
avoiding collisions