Visualization of the image segmentation and labeling pipeline for the first frame of an example movie.

<p>(A) Grayscale raw image. (B) Grayscale image showing the output of DeepCad. (C) Probability map generated by ilastik. (D) Binarized image obtained (from (C)) using thresholding via Li’s iterative Minimum Cross Entropy Method. (E) Smoothed binarized image. (F) Integrated movie over all time...

Full description

Saved in:
Bibliographic Details
Main Author: Miriam Schnitzerlein (21446136) (author)
Other Authors: Eric Greto (21446139) (author), Anja Wegner (10643774) (author), Anna Möller (18076549) (author), Oliver Aust (21446142) (author), Oumaima Ben Brahim (21446145) (author), David B. Blumenthal (11838270) (author), Vasily Zaburdaev (504665) (author), Stefan Uderhardt (21446148) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852019881564700672
author Miriam Schnitzerlein (21446136)
author2 Eric Greto (21446139)
Anja Wegner (10643774)
Anna Möller (18076549)
Oliver Aust (21446142)
Oumaima Ben Brahim (21446145)
David B. Blumenthal (11838270)
Vasily Zaburdaev (504665)
Stefan Uderhardt (21446148)
author2_role author
author
author
author
author
author
author
author
author_facet Miriam Schnitzerlein (21446136)
Eric Greto (21446139)
Anja Wegner (10643774)
Anna Möller (18076549)
Oliver Aust (21446142)
Oumaima Ben Brahim (21446145)
David B. Blumenthal (11838270)
Vasily Zaburdaev (504665)
Stefan Uderhardt (21446148)
author_role author
dc.creator.none.fl_str_mv Miriam Schnitzerlein (21446136)
Eric Greto (21446139)
Anja Wegner (10643774)
Anna Möller (18076549)
Oliver Aust (21446142)
Oumaima Ben Brahim (21446145)
David B. Blumenthal (11838270)
Vasily Zaburdaev (504665)
Stefan Uderhardt (21446148)
dc.date.none.fl_str_mv 2025-05-29T17:53:22Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1011859.g008
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Visualization_of_the_image_segmentation_and_labeling_pipeline_for_the_first_frame_of_an_example_movie_/29189004
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Medicine
Developmental Biology
Space Science
Biological Sciences not elsewhere classified
physiologically relevant approach
monitoring interstitial fluids
employed intravital imaging
div >< p
characteristic morphological changes
aged animals displayed
interpretable cell size
quantify rtm morphodynamics
generate dynamic data
clearing cellular debris
bona fide </
pathological cell states
functional tissue age
various functional states
resident tissue macrophages
physiological native state
functional states
cellular morphodynamics
tissue homeostasis
cell populations
various conditions
state conditions
functional status
dynamic behavior
vivo </
vitro </
young counterparts
wide range
upon challenge
shape features
qualitative differentiation
predominantly within
population level
naïve morphospace
morphodynamical phenotypes
inflammatory activation
including pro
fundamentally different
features allowed
endosomal dysfunction
diverse functions
defining human
current knowledge
behavioral motifs
>, enabling
dc.title.none.fl_str_mv Visualization of the image segmentation and labeling pipeline for the first frame of an example movie.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>(A) Grayscale raw image. (B) Grayscale image showing the output of DeepCad. (C) Probability map generated by ilastik. (D) Binarized image obtained (from (C)) using thresholding via Li’s iterative Minimum Cross Entropy Method. (E) Smoothed binarized image. (F) Integrated movie over all time frames. (G) Fixed area of the integrated movie by using a threshold of 0.97 on (F). (H) Label seeds obtained from (G) by coloring all distinct objects. (I) Overlay of label seeds (H) and binary segmented cells (D). (J) Labeling all distinct objects in (I) using the watershed algorithm to be used as new seed labels. (K) Dilating the cells from (E) and using the labeled cells from (J) as seed labels for the watershed algorithm to achieve the labeling as shown in (L). (M) Using the labels from (L) to correctly label the pre-processed binary images from (E). (N) Final labelled image.</p>
eu_rights_str_mv openAccess
id Manara_24a9e6a7b99137299feab5de4e5b10aa
identifier_str_mv 10.1371/journal.pcbi.1011859.g008
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29189004
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Visualization of the image segmentation and labeling pipeline for the first frame of an example movie.Miriam Schnitzerlein (21446136)Eric Greto (21446139)Anja Wegner (10643774)Anna Möller (18076549)Oliver Aust (21446142)Oumaima Ben Brahim (21446145)David B. Blumenthal (11838270)Vasily Zaburdaev (504665)Stefan Uderhardt (21446148)BiochemistryMedicineDevelopmental BiologySpace ScienceBiological Sciences not elsewhere classifiedphysiologically relevant approachmonitoring interstitial fluidsemployed intravital imagingdiv >< pcharacteristic morphological changesaged animals displayedinterpretable cell sizequantify rtm morphodynamicsgenerate dynamic dataclearing cellular debrisbona fide </pathological cell statesfunctional tissue agevarious functional statesresident tissue macrophagesphysiological native statefunctional statescellular morphodynamicstissue homeostasiscell populationsvarious conditionsstate conditionsfunctional statusdynamic behaviorvivo </vitro </young counterpartswide rangeupon challengeshape featuresqualitative differentiationpredominantly withinpopulation levelnaïve morphospacemorphodynamical phenotypesinflammatory activationincluding profundamentally differentfeatures allowedendosomal dysfunctiondiverse functionsdefining humancurrent knowledgebehavioral motifs>, enabling<p>(A) Grayscale raw image. (B) Grayscale image showing the output of DeepCad. (C) Probability map generated by ilastik. (D) Binarized image obtained (from (C)) using thresholding via Li’s iterative Minimum Cross Entropy Method. (E) Smoothed binarized image. (F) Integrated movie over all time frames. (G) Fixed area of the integrated movie by using a threshold of 0.97 on (F). (H) Label seeds obtained from (G) by coloring all distinct objects. (I) Overlay of label seeds (H) and binary segmented cells (D). (J) Labeling all distinct objects in (I) using the watershed algorithm to be used as new seed labels. (K) Dilating the cells from (E) and using the labeled cells from (J) as seed labels for the watershed algorithm to achieve the labeling as shown in (L). (M) Using the labels from (L) to correctly label the pre-processed binary images from (E). (N) Final labelled image.</p>2025-05-29T17:53:22ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pcbi.1011859.g008https://figshare.com/articles/figure/Visualization_of_the_image_segmentation_and_labeling_pipeline_for_the_first_frame_of_an_example_movie_/29189004CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/291890042025-05-29T17:53:22Z
spellingShingle Visualization of the image segmentation and labeling pipeline for the first frame of an example movie.
Miriam Schnitzerlein (21446136)
Biochemistry
Medicine
Developmental Biology
Space Science
Biological Sciences not elsewhere classified
physiologically relevant approach
monitoring interstitial fluids
employed intravital imaging
div >< p
characteristic morphological changes
aged animals displayed
interpretable cell size
quantify rtm morphodynamics
generate dynamic data
clearing cellular debris
bona fide </
pathological cell states
functional tissue age
various functional states
resident tissue macrophages
physiological native state
functional states
cellular morphodynamics
tissue homeostasis
cell populations
various conditions
state conditions
functional status
dynamic behavior
vivo </
vitro </
young counterparts
wide range
upon challenge
shape features
qualitative differentiation
predominantly within
population level
naïve morphospace
morphodynamical phenotypes
inflammatory activation
including pro
fundamentally different
features allowed
endosomal dysfunction
diverse functions
defining human
current knowledge
behavioral motifs
>, enabling
status_str publishedVersion
title Visualization of the image segmentation and labeling pipeline for the first frame of an example movie.
title_full Visualization of the image segmentation and labeling pipeline for the first frame of an example movie.
title_fullStr Visualization of the image segmentation and labeling pipeline for the first frame of an example movie.
title_full_unstemmed Visualization of the image segmentation and labeling pipeline for the first frame of an example movie.
title_short Visualization of the image segmentation and labeling pipeline for the first frame of an example movie.
title_sort Visualization of the image segmentation and labeling pipeline for the first frame of an example movie.
topic Biochemistry
Medicine
Developmental Biology
Space Science
Biological Sciences not elsewhere classified
physiologically relevant approach
monitoring interstitial fluids
employed intravital imaging
div >< p
characteristic morphological changes
aged animals displayed
interpretable cell size
quantify rtm morphodynamics
generate dynamic data
clearing cellular debris
bona fide </
pathological cell states
functional tissue age
various functional states
resident tissue macrophages
physiological native state
functional states
cellular morphodynamics
tissue homeostasis
cell populations
various conditions
state conditions
functional status
dynamic behavior
vivo </
vitro </
young counterparts
wide range
upon challenge
shape features
qualitative differentiation
predominantly within
population level
naïve morphospace
morphodynamical phenotypes
inflammatory activation
including pro
fundamentally different
features allowed
endosomal dysfunction
diverse functions
defining human
current knowledge
behavioral motifs
>, enabling