Primers Used in This Study.

<div><p>The growing prevalence of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) infections, coupled with the increasing resistance to existing antibiotics, underscores the critical need for novel therapeutic approaches to combat this pathogen. In this study, the r...

全面介绍

Saved in:
书目详细资料
主要作者: Jianhua Liao (1393228) (author)
其他作者: Jun Cheng (194158) (author), Baoqing Liu (1508821) (author), Yuzhi Shao (22683349) (author), Chunyan Meng (5993228) (author)
出版: 2025
主题:
标签: 添加标签
没有标签, 成为第一个标记此记录!
_version_ 1849927628578881536
author Jianhua Liao (1393228)
author2 Jun Cheng (194158)
Baoqing Liu (1508821)
Yuzhi Shao (22683349)
Chunyan Meng (5993228)
author2_role author
author
author
author
author_facet Jianhua Liao (1393228)
Jun Cheng (194158)
Baoqing Liu (1508821)
Yuzhi Shao (22683349)
Chunyan Meng (5993228)
author_role author
dc.creator.none.fl_str_mv Jianhua Liao (1393228)
Jun Cheng (194158)
Baoqing Liu (1508821)
Yuzhi Shao (22683349)
Chunyan Meng (5993228)
dc.date.none.fl_str_mv 2025-11-25T18:28:11Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0337292.t002
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Primers_Used_in_This_Study_/30713770
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Medicine
Microbiology
Cell Biology
Biotechnology
Evolutionary Biology
Ecology
Science Policy
Infectious Diseases
Virology
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
therapeutic strategies aimed
novel therapeutic approaches
murine infection model
div >< p
defense mechanisms employed
conserved gene encoding
compromising membrane stability
affect biofilm formation
staphylococcus aureus </
reduced bacterial burden
improved host survival
maintaining mrsa ’
oxidative stress resistance
yqhg </
withstand host
reduced motility
oxidative stress
increasing resistance
stress adaptation
potential target
periplasmic protein
mrsa virulence
mrsa pathogenesis
key determinant
infected organs
increased sensitivity
imposed stresses
growing prevalence
findings highlight
existing antibiotics
critical need
attenuates virulence
dc.title.none.fl_str_mv Primers Used in This Study.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <div><p>The growing prevalence of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) infections, coupled with the increasing resistance to existing antibiotics, underscores the critical need for novel therapeutic approaches to combat this pathogen. In this study, the role of <i>yqhG</i>, a conserved gene encoding a periplasmic protein, in MRSA virulence and stress adaptation was investigated. <i>yqhG</i> deletion in MRSA significantly attenuated virulence in a murine infection model, leading to reduced bacterial burden in infected organs and improved host survival. In vitro, the <i>yqhG</i> mutant exhibited impaired membrane integrity, reduced motility, and increased sensitivity to oxidative stress, but did not affect biofilm formation. These defects were fully restored upon genetic complementation. These findings highlight the critical role of <i>yqhG</i> in maintaining MRSA’s ability to withstand host-imposed stresses, suggesting that <i>yqhG</i> is a key determinant of MRSA pathogenesis. The study provides new insights into the stress-defense mechanisms employed by MRSA and underscores <i>yqhG</i> as a potential target for therapeutic strategies aimed at combating MRSA infections.</p></div>
eu_rights_str_mv openAccess
id Manara_24e380d73c7e5b358754c53b4e5cd8e5
identifier_str_mv 10.1371/journal.pone.0337292.t002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30713770
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Primers Used in This Study.Jianhua Liao (1393228)Jun Cheng (194158)Baoqing Liu (1508821)Yuzhi Shao (22683349)Chunyan Meng (5993228)MedicineMicrobiologyCell BiologyBiotechnologyEvolutionary BiologyEcologyScience PolicyInfectious DiseasesVirologyEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedtherapeutic strategies aimednovel therapeutic approachesmurine infection modeldiv >< pdefense mechanisms employedconserved gene encodingcompromising membrane stabilityaffect biofilm formationstaphylococcus aureus </reduced bacterial burdenimproved host survivalmaintaining mrsa ’oxidative stress resistanceyqhg </withstand hostreduced motilityoxidative stressincreasing resistancestress adaptationpotential targetperiplasmic proteinmrsa virulencemrsa pathogenesiskey determinantinfected organsincreased sensitivityimposed stressesgrowing prevalencefindings highlightexisting antibioticscritical needattenuates virulence<div><p>The growing prevalence of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) infections, coupled with the increasing resistance to existing antibiotics, underscores the critical need for novel therapeutic approaches to combat this pathogen. In this study, the role of <i>yqhG</i>, a conserved gene encoding a periplasmic protein, in MRSA virulence and stress adaptation was investigated. <i>yqhG</i> deletion in MRSA significantly attenuated virulence in a murine infection model, leading to reduced bacterial burden in infected organs and improved host survival. In vitro, the <i>yqhG</i> mutant exhibited impaired membrane integrity, reduced motility, and increased sensitivity to oxidative stress, but did not affect biofilm formation. These defects were fully restored upon genetic complementation. These findings highlight the critical role of <i>yqhG</i> in maintaining MRSA’s ability to withstand host-imposed stresses, suggesting that <i>yqhG</i> is a key determinant of MRSA pathogenesis. The study provides new insights into the stress-defense mechanisms employed by MRSA and underscores <i>yqhG</i> as a potential target for therapeutic strategies aimed at combating MRSA infections.</p></div>2025-11-25T18:28:11ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0337292.t002https://figshare.com/articles/dataset/Primers_Used_in_This_Study_/30713770CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307137702025-11-25T18:28:11Z
spellingShingle Primers Used in This Study.
Jianhua Liao (1393228)
Medicine
Microbiology
Cell Biology
Biotechnology
Evolutionary Biology
Ecology
Science Policy
Infectious Diseases
Virology
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
therapeutic strategies aimed
novel therapeutic approaches
murine infection model
div >< p
defense mechanisms employed
conserved gene encoding
compromising membrane stability
affect biofilm formation
staphylococcus aureus </
reduced bacterial burden
improved host survival
maintaining mrsa ’
oxidative stress resistance
yqhg </
withstand host
reduced motility
oxidative stress
increasing resistance
stress adaptation
potential target
periplasmic protein
mrsa virulence
mrsa pathogenesis
key determinant
infected organs
increased sensitivity
imposed stresses
growing prevalence
findings highlight
existing antibiotics
critical need
attenuates virulence
status_str publishedVersion
title Primers Used in This Study.
title_full Primers Used in This Study.
title_fullStr Primers Used in This Study.
title_full_unstemmed Primers Used in This Study.
title_short Primers Used in This Study.
title_sort Primers Used in This Study.
topic Medicine
Microbiology
Cell Biology
Biotechnology
Evolutionary Biology
Ecology
Science Policy
Infectious Diseases
Virology
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
therapeutic strategies aimed
novel therapeutic approaches
murine infection model
div >< p
defense mechanisms employed
conserved gene encoding
compromising membrane stability
affect biofilm formation
staphylococcus aureus </
reduced bacterial burden
improved host survival
maintaining mrsa ’
oxidative stress resistance
yqhg </
withstand host
reduced motility
oxidative stress
increasing resistance
stress adaptation
potential target
periplasmic protein
mrsa virulence
mrsa pathogenesis
key determinant
infected organs
increased sensitivity
imposed stresses
growing prevalence
findings highlight
existing antibiotics
critical need
attenuates virulence