Supplementary file 2_Resveratrol attenuates pulmonary fibrosis by inhibiting alveolar epithelial senescence via targeting SASP-related proteins: an integrated bioinformatics-experimental study.xlsx

Background<p>Pulmonary fibrosis (PF) is a progressive and fatal interstitial lung disease with limited treatment options. Premature senescence of alveolar epithelial type II cells (AT2 cells) plays a critical role in PF pathogenesis. This study aimed to identify natural compounds targeting sen...

Ամբողջական նկարագրություն

Պահպանված է:
Մատենագիտական մանրամասներ
Հիմնական հեղինակ: Biao Zuo (1529497) (author)
Այլ հեղինակներ: Su Yuan (9516815) (author), Chen Luo (302288) (author), Xu-Qin Du (11434573) (author), Yong-Can Wu (22687517) (author), Li-Peng Shi (11434576) (author), Jin-Xin Chen (8430351) (author), Bo-Tao Chen (1978582) (author), Jie Zhou (28945) (author), Yi Ren (30049) (author)
Հրապարակվել է: 2025
Խորագրեր:
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!
Նկարագրություն
Ամփոփում:Background<p>Pulmonary fibrosis (PF) is a progressive and fatal interstitial lung disease with limited treatment options. Premature senescence of alveolar epithelial type II cells (AT2 cells) plays a critical role in PF pathogenesis. This study aimed to identify natural compounds targeting senescence-related pathways for PF treatment.</p>Methods<p>An integrated approach was implemented, combining bioinformatics, artificial intelligence (AI)-assisted molecular docking, ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiling, and experimental validation. Core targets associated with aging-related pulmonary fibrosis (PF) were identified via database mining (GeneCards and AgingAtlas) and protein-protein interaction (PPI) network analysis. Natural compounds were screened using the HERB database, and resveratrol (RES) was selected due to its multi-target activity and favorable ADMET characteristics. The efficacy of RES was evaluated through in vitro experiments using bleomycin (BLM)-induced senescent A549 alveolar epithelial cells and in vivo studies in a BLM-induced PF mouse model (C57BL/6J). Molecular docking simulations were performed to predict the binding affinity between RES and key targets, including SERPINE1, MMP2, and IL-6.</p>Results<p>Bioinformatics identified 322 aging-related PF targets, with TP53, AKT1, STAT3, JUN, and NFKB1 as core regulators. Resveratrol was selected as a top candidate modulating all five core targets and exhibiting optimal drug-likeness. Molecular docking and dynamics simulations confirmed strong binding affinity between RES and key senescence-associated proteins (SERPINE1: −8 kcal/mol; MMP2: −7.5 kcal/mol; IL-6: −7.1 kcal/mol). In vitro, RES (10–40 μM) significantly suppressed bleomycin-induced senescence in A549 cells, reducing SA-β-Gal activity and downregulating SERPINE1, MMP2, and IL6 expression. In vivo, RES treatment (20–80 mg/kg, 21 days) attenuated bleomycin-induced PF in mice, improving weight loss, reducing alveolar damage, inflammation, and collagen deposition (Masson’s trichrome) in a dose-dependent manner.</p>Conclusion<p>Resveratrol effectively inhibits alveolar epithelial cell senescence and ameliorates pulmonary fibrosis, likely by targeting key senescence-associated pathways (e.g., SERPINE1, MMP2, IL-6). This study provides a promising transdisciplinary strategy for anti-fibrotic drug discovery and highlights RES as a potential therapeutic candidate for PF.</p>