_version_ 1852023150034812928
author Shuai Pang (4447831)
author2 Chaochao You (20642598)
Min Zhang (111999)
Baojie Zhang (511505)
Liyou Wang (20642601)
Xiaolong Shi (412458)
Yu Sun (18463)
author2_role author
author
author
author
author
author
author_facet Shuai Pang (4447831)
Chaochao You (20642598)
Min Zhang (111999)
Baojie Zhang (511505)
Liyou Wang (20642601)
Xiaolong Shi (412458)
Yu Sun (18463)
author_role author
dc.creator.none.fl_str_mv Shuai Pang (4447831)
Chaochao You (20642598)
Min Zhang (111999)
Baojie Zhang (511505)
Liyou Wang (20642601)
Xiaolong Shi (412458)
Yu Sun (18463)
dc.date.none.fl_str_mv 2025-01-30T18:37:40Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0306755.t005
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Experimental_results_of_different_with_i_L_i_sub_i_s_i_sub_loss_function_on_the_CDD_datasets_/28317030
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Neuroscience
Science Policy
Space Science
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> interfered
shared attention aggregation
receptive field limits
highly efficient channel
head attention module
cdd datasets show
sharing channel information
encode position details
detecting different scales
building change detection
feature aggregation module
scale local features
irregular object buildings
redundant information
different stages
detection performance
feature extractor
siamese network
siamese features
residual strategy
position multi
global features
external factors
experimental results
encoding stage
detailed semantics
better accuracy
dc.title.none.fl_str_mv Experimental results of different λ with <i>L</i><sub><i>s</i></sub> loss function on the CDD datasets.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>In our proposed SAASNets detection framework, λ = 0.2.</p>
eu_rights_str_mv openAccess
id Manara_27eedcb10816c19a2464f985f433da3a
identifier_str_mv 10.1371/journal.pone.0306755.t005
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28317030
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Experimental results of different λ with <i>L</i><sub><i>s</i></sub> loss function on the CDD datasets.Shuai Pang (4447831)Chaochao You (20642598)Min Zhang (111999)Baojie Zhang (511505)Liyou Wang (20642601)Xiaolong Shi (412458)Yu Sun (18463)NeuroscienceScience PolicySpace ScienceBiological Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedxlink "> interferedshared attention aggregationreceptive field limitshighly efficient channelhead attention modulecdd datasets showsharing channel informationencode position detailsdetecting different scalesbuilding change detectionfeature aggregation modulescale local featuresirregular object buildingsredundant informationdifferent stagesdetection performancefeature extractorsiamese networksiamese featuresresidual strategyposition multiglobal featuresexternal factorsexperimental resultsencoding stagedetailed semanticsbetter accuracy<p>In our proposed SAASNets detection framework, λ = 0.2.</p>2025-01-30T18:37:40ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0306755.t005https://figshare.com/articles/dataset/Experimental_results_of_different_with_i_L_i_sub_i_s_i_sub_loss_function_on_the_CDD_datasets_/28317030CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/283170302025-01-30T18:37:40Z
spellingShingle Experimental results of different λ with <i>L</i><sub><i>s</i></sub> loss function on the CDD datasets.
Shuai Pang (4447831)
Neuroscience
Science Policy
Space Science
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> interfered
shared attention aggregation
receptive field limits
highly efficient channel
head attention module
cdd datasets show
sharing channel information
encode position details
detecting different scales
building change detection
feature aggregation module
scale local features
irregular object buildings
redundant information
different stages
detection performance
feature extractor
siamese network
siamese features
residual strategy
position multi
global features
external factors
experimental results
encoding stage
detailed semantics
better accuracy
status_str publishedVersion
title Experimental results of different λ with <i>L</i><sub><i>s</i></sub> loss function on the CDD datasets.
title_full Experimental results of different λ with <i>L</i><sub><i>s</i></sub> loss function on the CDD datasets.
title_fullStr Experimental results of different λ with <i>L</i><sub><i>s</i></sub> loss function on the CDD datasets.
title_full_unstemmed Experimental results of different λ with <i>L</i><sub><i>s</i></sub> loss function on the CDD datasets.
title_short Experimental results of different λ with <i>L</i><sub><i>s</i></sub> loss function on the CDD datasets.
title_sort Experimental results of different λ with <i>L</i><sub><i>s</i></sub> loss function on the CDD datasets.
topic Neuroscience
Science Policy
Space Science
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> interfered
shared attention aggregation
receptive field limits
highly efficient channel
head attention module
cdd datasets show
sharing channel information
encode position details
detecting different scales
building change detection
feature aggregation module
scale local features
irregular object buildings
redundant information
different stages
detection performance
feature extractor
siamese network
siamese features
residual strategy
position multi
global features
external factors
experimental results
encoding stage
detailed semantics
better accuracy