2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.

<p>2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Md. Fahim Ul Islam (22470251) (author)
مؤلفون آخرون: Shahriar Hossain (17666863) (author), Md. Golam Rabiul Alam (14285073) (author), Nafees Mansoor (16891455) (author), Amitabha Chakrabarty (22470254) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852015645783228416
author Md. Fahim Ul Islam (22470251)
author2 Shahriar Hossain (17666863)
Md. Golam Rabiul Alam (14285073)
Nafees Mansoor (16891455)
Amitabha Chakrabarty (22470254)
author2_role author
author
author
author
author_facet Md. Fahim Ul Islam (22470251)
Shahriar Hossain (17666863)
Md. Golam Rabiul Alam (14285073)
Nafees Mansoor (16891455)
Amitabha Chakrabarty (22470254)
author_role author
dc.creator.none.fl_str_mv Md. Fahim Ul Islam (22470251)
Shahriar Hossain (17666863)
Md. Golam Rabiul Alam (14285073)
Nafees Mansoor (16891455)
Amitabha Chakrabarty (22470254)
dc.date.none.fl_str_mv 2025-10-21T17:38:41Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0333286.g017
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/2D_PCA_and_t-SNE_plots_showing_distinct_clusters_for_network_slices_indicating_effective_feature_extraction_and_slice_differentiation_by_the_INBSI_model_/30409904
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
optimize resource allocation
nearest neighbors algorithm
gaussian naive bayes
deep neural forest
certain input characteristics
additional methods varies
preprocessing initial data
data validity assessment
shared physical infrastructure
shapley additive explanations
massive iot deployments
including decision trees
69 %), baggingclassifier
optimizing network resources
network slicing process
local interpretable model
vae data preprocessing
network slicing
iot infrastructure
reconstructed data
including 5g
allocate resources
agnostic explanations
70 %),
work highlights
wireless networks
various applications
variational autoencoder
sdn ),
rely heavily
reliable low
provide insight
powerful tools
offering insights
ns ),
multilayer perceptrons
mlps ).
lime ),
latency communications
intelligent algorithms
increasingly applied
generation mobile
driven solutions
dnf ),
diverse quality
defined networking
artificial intelligence
84 %)
55 %).
dc.title.none.fl_str_mv 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.</p>
eu_rights_str_mv openAccess
id Manara_28c0dc6fd42a0ca44f019c9b4ff6c8a7
identifier_str_mv 10.1371/journal.pone.0333286.g017
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30409904
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.Md. Fahim Ul Islam (22470251)Shahriar Hossain (17666863)Md. Golam Rabiul Alam (14285073)Nafees Mansoor (16891455)Amitabha Chakrabarty (22470254)Space ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedoptimize resource allocationnearest neighbors algorithmgaussian naive bayesdeep neural forestcertain input characteristicsadditional methods variespreprocessing initial datadata validity assessmentshared physical infrastructureshapley additive explanationsmassive iot deploymentsincluding decision trees69 %), baggingclassifieroptimizing network resourcesnetwork slicing processlocal interpretable modelvae data preprocessingnetwork slicingiot infrastructurereconstructed dataincluding 5gallocate resourcesagnostic explanations70 %),work highlightswireless networksvarious applicationsvariational autoencodersdn ),rely heavilyreliable lowprovide insightpowerful toolsoffering insightsns ),multilayer perceptronsmlps ).lime ),latency communicationsintelligent algorithmsincreasingly appliedgeneration mobiledriven solutionsdnf ),diverse qualitydefined networkingartificial intelligence84 %)55 %).<p>2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.</p>2025-10-21T17:38:41ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0333286.g017https://figshare.com/articles/figure/2D_PCA_and_t-SNE_plots_showing_distinct_clusters_for_network_slices_indicating_effective_feature_extraction_and_slice_differentiation_by_the_INBSI_model_/30409904CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/304099042025-10-21T17:38:41Z
spellingShingle 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.
Md. Fahim Ul Islam (22470251)
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
optimize resource allocation
nearest neighbors algorithm
gaussian naive bayes
deep neural forest
certain input characteristics
additional methods varies
preprocessing initial data
data validity assessment
shared physical infrastructure
shapley additive explanations
massive iot deployments
including decision trees
69 %), baggingclassifier
optimizing network resources
network slicing process
local interpretable model
vae data preprocessing
network slicing
iot infrastructure
reconstructed data
including 5g
allocate resources
agnostic explanations
70 %),
work highlights
wireless networks
various applications
variational autoencoder
sdn ),
rely heavily
reliable low
provide insight
powerful tools
offering insights
ns ),
multilayer perceptrons
mlps ).
lime ),
latency communications
intelligent algorithms
increasingly applied
generation mobile
driven solutions
dnf ),
diverse quality
defined networking
artificial intelligence
84 %)
55 %).
status_str publishedVersion
title 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.
title_full 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.
title_fullStr 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.
title_full_unstemmed 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.
title_short 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.
title_sort 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.
topic Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
optimize resource allocation
nearest neighbors algorithm
gaussian naive bayes
deep neural forest
certain input characteristics
additional methods varies
preprocessing initial data
data validity assessment
shared physical infrastructure
shapley additive explanations
massive iot deployments
including decision trees
69 %), baggingclassifier
optimizing network resources
network slicing process
local interpretable model
vae data preprocessing
network slicing
iot infrastructure
reconstructed data
including 5g
allocate resources
agnostic explanations
70 %),
work highlights
wireless networks
various applications
variational autoencoder
sdn ),
rely heavily
reliable low
provide insight
powerful tools
offering insights
ns ),
multilayer perceptrons
mlps ).
lime ),
latency communications
intelligent algorithms
increasingly applied
generation mobile
driven solutions
dnf ),
diverse quality
defined networking
artificial intelligence
84 %)
55 %).