2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.
<p>2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.</p>
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , , |
| منشور في: |
2025
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| _version_ | 1852015645783228416 |
|---|---|
| author | Md. Fahim Ul Islam (22470251) |
| author2 | Shahriar Hossain (17666863) Md. Golam Rabiul Alam (14285073) Nafees Mansoor (16891455) Amitabha Chakrabarty (22470254) |
| author2_role | author author author author |
| author_facet | Md. Fahim Ul Islam (22470251) Shahriar Hossain (17666863) Md. Golam Rabiul Alam (14285073) Nafees Mansoor (16891455) Amitabha Chakrabarty (22470254) |
| author_role | author |
| dc.creator.none.fl_str_mv | Md. Fahim Ul Islam (22470251) Shahriar Hossain (17666863) Md. Golam Rabiul Alam (14285073) Nafees Mansoor (16891455) Amitabha Chakrabarty (22470254) |
| dc.date.none.fl_str_mv | 2025-10-21T17:38:41Z |
| dc.identifier.none.fl_str_mv | 10.1371/journal.pone.0333286.g017 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/figure/2D_PCA_and_t-SNE_plots_showing_distinct_clusters_for_network_slices_indicating_effective_feature_extraction_and_slice_differentiation_by_the_INBSI_model_/30409904 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Space Science Biological Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Information Systems not elsewhere classified optimize resource allocation nearest neighbors algorithm gaussian naive bayes deep neural forest certain input characteristics additional methods varies preprocessing initial data data validity assessment shared physical infrastructure shapley additive explanations massive iot deployments including decision trees 69 %), baggingclassifier optimizing network resources network slicing process local interpretable model vae data preprocessing network slicing iot infrastructure reconstructed data including 5g allocate resources agnostic explanations 70 %), work highlights wireless networks various applications variational autoencoder sdn ), rely heavily reliable low provide insight powerful tools offering insights ns ), multilayer perceptrons mlps ). lime ), latency communications intelligent algorithms increasingly applied generation mobile driven solutions dnf ), diverse quality defined networking artificial intelligence 84 %) 55 %). |
| dc.title.none.fl_str_mv | 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model. |
| dc.type.none.fl_str_mv | Image Figure info:eu-repo/semantics/publishedVersion image |
| description | <p>2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_28c0dc6fd42a0ca44f019c9b4ff6c8a7 |
| identifier_str_mv | 10.1371/journal.pone.0333286.g017 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/30409904 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.Md. Fahim Ul Islam (22470251)Shahriar Hossain (17666863)Md. Golam Rabiul Alam (14285073)Nafees Mansoor (16891455)Amitabha Chakrabarty (22470254)Space ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedoptimize resource allocationnearest neighbors algorithmgaussian naive bayesdeep neural forestcertain input characteristicsadditional methods variespreprocessing initial datadata validity assessmentshared physical infrastructureshapley additive explanationsmassive iot deploymentsincluding decision trees69 %), baggingclassifieroptimizing network resourcesnetwork slicing processlocal interpretable modelvae data preprocessingnetwork slicingiot infrastructurereconstructed dataincluding 5gallocate resourcesagnostic explanations70 %),work highlightswireless networksvarious applicationsvariational autoencodersdn ),rely heavilyreliable lowprovide insightpowerful toolsoffering insightsns ),multilayer perceptronsmlps ).lime ),latency communicationsintelligent algorithmsincreasingly appliedgeneration mobiledriven solutionsdnf ),diverse qualitydefined networkingartificial intelligence84 %)55 %).<p>2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model.</p>2025-10-21T17:38:41ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0333286.g017https://figshare.com/articles/figure/2D_PCA_and_t-SNE_plots_showing_distinct_clusters_for_network_slices_indicating_effective_feature_extraction_and_slice_differentiation_by_the_INBSI_model_/30409904CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/304099042025-10-21T17:38:41Z |
| spellingShingle | 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model. Md. Fahim Ul Islam (22470251) Space Science Biological Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Information Systems not elsewhere classified optimize resource allocation nearest neighbors algorithm gaussian naive bayes deep neural forest certain input characteristics additional methods varies preprocessing initial data data validity assessment shared physical infrastructure shapley additive explanations massive iot deployments including decision trees 69 %), baggingclassifier optimizing network resources network slicing process local interpretable model vae data preprocessing network slicing iot infrastructure reconstructed data including 5g allocate resources agnostic explanations 70 %), work highlights wireless networks various applications variational autoencoder sdn ), rely heavily reliable low provide insight powerful tools offering insights ns ), multilayer perceptrons mlps ). lime ), latency communications intelligent algorithms increasingly applied generation mobile driven solutions dnf ), diverse quality defined networking artificial intelligence 84 %) 55 %). |
| status_str | publishedVersion |
| title | 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model. |
| title_full | 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model. |
| title_fullStr | 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model. |
| title_full_unstemmed | 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model. |
| title_short | 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model. |
| title_sort | 2D PCA and t-SNE plots showing distinct clusters for network slices, indicating effective feature extraction and slice differentiation by the INBSI model. |
| topic | Space Science Biological Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Information Systems not elsewhere classified optimize resource allocation nearest neighbors algorithm gaussian naive bayes deep neural forest certain input characteristics additional methods varies preprocessing initial data data validity assessment shared physical infrastructure shapley additive explanations massive iot deployments including decision trees 69 %), baggingclassifier optimizing network resources network slicing process local interpretable model vae data preprocessing network slicing iot infrastructure reconstructed data including 5g allocate resources agnostic explanations 70 %), work highlights wireless networks various applications variational autoencoder sdn ), rely heavily reliable low provide insight powerful tools offering insights ns ), multilayer perceptrons mlps ). lime ), latency communications intelligent algorithms increasingly applied generation mobile driven solutions dnf ), diverse quality defined networking artificial intelligence 84 %) 55 %). |