Power comparisons between AntEpiSeeker(A), DECMDR(D), HS-MMGKG(G), SEE(S), SHEIB-AGM(B), SNPHarvester(H), SNPRuler(R) and Epi-SSA(P) on the DNME 1000 dataset.

<p>Power comparisons between AntEpiSeeker(A), DECMDR(D), HS-MMGKG(G), SEE(S), SHEIB-AGM(B), SNPHarvester(H), SNPRuler(R) and Epi-SSA(P) on the DNME 1000 dataset.</p>

Saved in:
Bibliographic Details
Main Author: Liyan Sun (760586) (author)
Other Authors: Jingwen Bian (19942771) (author), Yi Xin (146413) (author), Linqing Jiang (19942774) (author), Linxuan Zheng (19942777) (author)
Published: 2024
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852025694805032960
author Liyan Sun (760586)
author2 Jingwen Bian (19942771)
Yi Xin (146413)
Linqing Jiang (19942774)
Linxuan Zheng (19942777)
author2_role author
author
author
author
author_facet Liyan Sun (760586)
Jingwen Bian (19942771)
Yi Xin (146413)
Linqing Jiang (19942774)
Linxuan Zheng (19942777)
author_role author
dc.creator.none.fl_str_mv Liyan Sun (760586)
Jingwen Bian (19942771)
Yi Xin (146413)
Linqing Jiang (19942774)
Linxuan Zheng (19942777)
dc.date.none.fl_str_mv 2024-10-24T17:48:50Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0311223.s036
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Power_comparisons_between_AntEpiSeeker_A_DECMDR_D_HS-MMGKG_G_SEE_S_SHEIB-AGM_B_SNPHarvester_H_SNPRuler_R_and_Epi-SSA_P_on_the_DNME_1000_dataset_/27295435
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Genetics
Molecular Biology
Cancer
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
sparrow search algorithm
multiple objective functions
experimental results demonstrate
comparative toxicogenomics database
alongside 800 case
algorithms &# 8217
800 control samples
detecting epistatic interactions
ssa draws inspiration
ssa algorithm outperforms
exploring complex diseases
xlink "> genome
uncovering numerous genes
order epistatic interactions
highest average f
data set increases
seven complex diseases
epistasis detection tasks
dnme 100 datasets
complex diseases
xlink ">
data increases
average f
detecting epistasis
dnme 100
five datasets
dnme 1000
order epistasis
epistasis rises
dnme3 100
dme 100
wtccc dataset
source code
six third
significant role
relatedly reported
properties consistent
potent tool
population based
otherwise paralleling
might play
marginal effects
identifying higher
higher level
gene pairs
dme 1000
detect high
ctd ).
crucial factor
comprehensive comparison
better utilized
aids us
6sqwj /</
dc.title.none.fl_str_mv Power comparisons between AntEpiSeeker(A), DECMDR(D), HS-MMGKG(G), SEE(S), SHEIB-AGM(B), SNPHarvester(H), SNPRuler(R) and Epi-SSA(P) on the DNME 1000 dataset.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Power comparisons between AntEpiSeeker(A), DECMDR(D), HS-MMGKG(G), SEE(S), SHEIB-AGM(B), SNPHarvester(H), SNPRuler(R) and Epi-SSA(P) on the DNME 1000 dataset.</p>
eu_rights_str_mv openAccess
id Manara_29a8b3dcd0d047b853d93aa8904bb457
identifier_str_mv 10.1371/journal.pone.0311223.s036
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/27295435
publishDate 2024
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Power comparisons between AntEpiSeeker(A), DECMDR(D), HS-MMGKG(G), SEE(S), SHEIB-AGM(B), SNPHarvester(H), SNPRuler(R) and Epi-SSA(P) on the DNME 1000 dataset.Liyan Sun (760586)Jingwen Bian (19942771)Yi Xin (146413)Linqing Jiang (19942774)Linxuan Zheng (19942777)BiochemistryGeneticsMolecular BiologyCancerComputational BiologyBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedsparrow search algorithmmultiple objective functionsexperimental results demonstratecomparative toxicogenomics databasealongside 800 casealgorithms &# 8217800 control samplesdetecting epistatic interactionsssa draws inspirationssa algorithm outperformsexploring complex diseasesxlink "> genomeuncovering numerous genesorder epistatic interactionshighest average fdata set increasesseven complex diseasesepistasis detection tasksdnme 100 datasetscomplex diseasesxlink ">data increasesaverage fdetecting epistasisdnme 100five datasetsdnme 1000order epistasisepistasis risesdnme3 100dme 100wtccc datasetsource codesix thirdsignificant rolerelatedly reportedproperties consistentpotent toolpopulation basedotherwise parallelingmight playmarginal effectsidentifying higherhigher levelgene pairsdme 1000detect highctd ).crucial factorcomprehensive comparisonbetter utilizedaids us6sqwj /</<p>Power comparisons between AntEpiSeeker(A), DECMDR(D), HS-MMGKG(G), SEE(S), SHEIB-AGM(B), SNPHarvester(H), SNPRuler(R) and Epi-SSA(P) on the DNME 1000 dataset.</p>2024-10-24T17:48:50ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0311223.s036https://figshare.com/articles/dataset/Power_comparisons_between_AntEpiSeeker_A_DECMDR_D_HS-MMGKG_G_SEE_S_SHEIB-AGM_B_SNPHarvester_H_SNPRuler_R_and_Epi-SSA_P_on_the_DNME_1000_dataset_/27295435CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/272954352024-10-24T17:48:50Z
spellingShingle Power comparisons between AntEpiSeeker(A), DECMDR(D), HS-MMGKG(G), SEE(S), SHEIB-AGM(B), SNPHarvester(H), SNPRuler(R) and Epi-SSA(P) on the DNME 1000 dataset.
Liyan Sun (760586)
Biochemistry
Genetics
Molecular Biology
Cancer
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
sparrow search algorithm
multiple objective functions
experimental results demonstrate
comparative toxicogenomics database
alongside 800 case
algorithms &# 8217
800 control samples
detecting epistatic interactions
ssa draws inspiration
ssa algorithm outperforms
exploring complex diseases
xlink "> genome
uncovering numerous genes
order epistatic interactions
highest average f
data set increases
seven complex diseases
epistasis detection tasks
dnme 100 datasets
complex diseases
xlink ">
data increases
average f
detecting epistasis
dnme 100
five datasets
dnme 1000
order epistasis
epistasis rises
dnme3 100
dme 100
wtccc dataset
source code
six third
significant role
relatedly reported
properties consistent
potent tool
population based
otherwise paralleling
might play
marginal effects
identifying higher
higher level
gene pairs
dme 1000
detect high
ctd ).
crucial factor
comprehensive comparison
better utilized
aids us
6sqwj /</
status_str publishedVersion
title Power comparisons between AntEpiSeeker(A), DECMDR(D), HS-MMGKG(G), SEE(S), SHEIB-AGM(B), SNPHarvester(H), SNPRuler(R) and Epi-SSA(P) on the DNME 1000 dataset.
title_full Power comparisons between AntEpiSeeker(A), DECMDR(D), HS-MMGKG(G), SEE(S), SHEIB-AGM(B), SNPHarvester(H), SNPRuler(R) and Epi-SSA(P) on the DNME 1000 dataset.
title_fullStr Power comparisons between AntEpiSeeker(A), DECMDR(D), HS-MMGKG(G), SEE(S), SHEIB-AGM(B), SNPHarvester(H), SNPRuler(R) and Epi-SSA(P) on the DNME 1000 dataset.
title_full_unstemmed Power comparisons between AntEpiSeeker(A), DECMDR(D), HS-MMGKG(G), SEE(S), SHEIB-AGM(B), SNPHarvester(H), SNPRuler(R) and Epi-SSA(P) on the DNME 1000 dataset.
title_short Power comparisons between AntEpiSeeker(A), DECMDR(D), HS-MMGKG(G), SEE(S), SHEIB-AGM(B), SNPHarvester(H), SNPRuler(R) and Epi-SSA(P) on the DNME 1000 dataset.
title_sort Power comparisons between AntEpiSeeker(A), DECMDR(D), HS-MMGKG(G), SEE(S), SHEIB-AGM(B), SNPHarvester(H), SNPRuler(R) and Epi-SSA(P) on the DNME 1000 dataset.
topic Biochemistry
Genetics
Molecular Biology
Cancer
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
sparrow search algorithm
multiple objective functions
experimental results demonstrate
comparative toxicogenomics database
alongside 800 case
algorithms &# 8217
800 control samples
detecting epistatic interactions
ssa draws inspiration
ssa algorithm outperforms
exploring complex diseases
xlink "> genome
uncovering numerous genes
order epistatic interactions
highest average f
data set increases
seven complex diseases
epistasis detection tasks
dnme 100 datasets
complex diseases
xlink ">
data increases
average f
detecting epistasis
dnme 100
five datasets
dnme 1000
order epistasis
epistasis rises
dnme3 100
dme 100
wtccc dataset
source code
six third
significant role
relatedly reported
properties consistent
potent tool
population based
otherwise paralleling
might play
marginal effects
identifying higher
higher level
gene pairs
dme 1000
detect high
ctd ).
crucial factor
comprehensive comparison
better utilized
aids us
6sqwj /</