Condensed summary of graph anomaly detection methods and their key strengths and limitations.

<p>Condensed summary of graph anomaly detection methods and their key strengths and limitations.</p>

में बचाया:
ग्रंथसूची विवरण
मुख्य लेखक: Hossein Rafieizadeh (22676722) (author)
अन्य लेखक: Hadi Zare (20073000) (author), Mohsen Ghassemi Parsa (22676725) (author), Hocine Cherifi (8177628) (author)
प्रकाशित: 2025
विषय:
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
_version_ 1849927640790597632
author Hossein Rafieizadeh (22676722)
author2 Hadi Zare (20073000)
Mohsen Ghassemi Parsa (22676725)
Hocine Cherifi (8177628)
author2_role author
author
author
author_facet Hossein Rafieizadeh (22676722)
Hadi Zare (20073000)
Mohsen Ghassemi Parsa (22676725)
Hocine Cherifi (8177628)
author_role author
dc.creator.none.fl_str_mv Hossein Rafieizadeh (22676722)
Hadi Zare (20073000)
Mohsen Ghassemi Parsa (22676725)
Hocine Cherifi (8177628)
dc.date.none.fl_str_mv 2025-11-24T18:38:00Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0335135.t002
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Condensed_summary_of_graph_anomaly_detection_methods_and_their_key_strengths_and_limitations_/30698023
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cell Biology
Science Policy
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
intrusions across social
reconstructions across views
level contrastive learning
dual contrastive learning
across six benchmarks
div >< p
view discrepancies underutilized
augmented graph views
dcor improves auroc
view discrepancies
level contrast
dual autoencoder
augmented view
specific information
six datasets
reduces auroc
publicly available
preserves fine
physical domains
performing non
maximum gain
leaving cross
identifying threats
financial fraud
existing graph
dcor reconstructs
dcor ),
contrasts reconstructions
attributed networks
attribute patterns
dc.title.none.fl_str_mv Condensed summary of graph anomaly detection methods and their key strengths and limitations.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Condensed summary of graph anomaly detection methods and their key strengths and limitations.</p>
eu_rights_str_mv openAccess
id Manara_2ea7ebe6112bdca095ae4657e250b966
identifier_str_mv 10.1371/journal.pone.0335135.t002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30698023
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Condensed summary of graph anomaly detection methods and their key strengths and limitations.Hossein Rafieizadeh (22676722)Hadi Zare (20073000)Mohsen Ghassemi Parsa (22676725)Hocine Cherifi (8177628)Cell BiologyScience PolicyEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedintrusions across socialreconstructions across viewslevel contrastive learningdual contrastive learningacross six benchmarksdiv >< pview discrepancies underutilizedaugmented graph viewsdcor improves aurocview discrepancieslevel contrastdual autoencoderaugmented viewspecific informationsix datasetsreduces aurocpublicly availablepreserves finephysical domainsperforming nonmaximum gainleaving crossidentifying threatsfinancial fraudexisting graphdcor reconstructsdcor ),contrasts reconstructionsattributed networksattribute patterns<p>Condensed summary of graph anomaly detection methods and their key strengths and limitations.</p>2025-11-24T18:38:00ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0335135.t002https://figshare.com/articles/dataset/Condensed_summary_of_graph_anomaly_detection_methods_and_their_key_strengths_and_limitations_/30698023CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306980232025-11-24T18:38:00Z
spellingShingle Condensed summary of graph anomaly detection methods and their key strengths and limitations.
Hossein Rafieizadeh (22676722)
Cell Biology
Science Policy
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
intrusions across social
reconstructions across views
level contrastive learning
dual contrastive learning
across six benchmarks
div >< p
view discrepancies underutilized
augmented graph views
dcor improves auroc
view discrepancies
level contrast
dual autoencoder
augmented view
specific information
six datasets
reduces auroc
publicly available
preserves fine
physical domains
performing non
maximum gain
leaving cross
identifying threats
financial fraud
existing graph
dcor reconstructs
dcor ),
contrasts reconstructions
attributed networks
attribute patterns
status_str publishedVersion
title Condensed summary of graph anomaly detection methods and their key strengths and limitations.
title_full Condensed summary of graph anomaly detection methods and their key strengths and limitations.
title_fullStr Condensed summary of graph anomaly detection methods and their key strengths and limitations.
title_full_unstemmed Condensed summary of graph anomaly detection methods and their key strengths and limitations.
title_short Condensed summary of graph anomaly detection methods and their key strengths and limitations.
title_sort Condensed summary of graph anomaly detection methods and their key strengths and limitations.
topic Cell Biology
Science Policy
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
intrusions across social
reconstructions across views
level contrastive learning
dual contrastive learning
across six benchmarks
div >< p
view discrepancies underutilized
augmented graph views
dcor improves auroc
view discrepancies
level contrast
dual autoencoder
augmented view
specific information
six datasets
reduces auroc
publicly available
preserves fine
physical domains
performing non
maximum gain
leaving cross
identifying threats
financial fraud
existing graph
dcor reconstructs
dcor ),
contrasts reconstructions
attributed networks
attribute patterns