Comparisons of median computation times (in seconds) based on 5 runs for the GEM algorithm and the MCMC methods.

<p>HMFGraph Gibbs, G-Wishart, and BGGM were run with 5000 iterations. For all <i>p</i>, .</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Aapo E. Korhonen (22530674) (author)
مؤلفون آخرون: Olli Sarala (22530677) (author), Tuomas Hautamäki (22530680) (author), Markku Kuismin (2170918) (author), Mikko J. Sillanpää (8139792) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852015327045484544
author Aapo E. Korhonen (22530674)
author2 Olli Sarala (22530677)
Tuomas Hautamäki (22530680)
Markku Kuismin (2170918)
Mikko J. Sillanpää (8139792)
author2_role author
author
author
author
author_facet Aapo E. Korhonen (22530674)
Olli Sarala (22530677)
Tuomas Hautamäki (22530680)
Markku Kuismin (2170918)
Mikko J. Sillanpää (8139792)
author_role author
dc.creator.none.fl_str_mv Aapo E. Korhonen (22530674)
Olli Sarala (22530677)
Tuomas Hautamäki (22530680)
Markku Kuismin (2170918)
Mikko J. Sillanpää (8139792)
dc.date.none.fl_str_mv 2025-10-30T17:49:42Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1013614.t002
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Comparisons_of_median_computation_times_in_seconds_based_on_5_runs_for_the_GEM_algorithm_and_the_MCMC_methods_/30493907
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Genetics
Biotechnology
Cancer
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
recovering meaningful networks
partial correlation networks
false discovery rate
explain complex relationships
novel bayesian approach
dimensional omics datasets
biological example analyses
estimated precision matrix
large datasets
hierarchical matrix
estimated f
biological variables
bayesian implementations
whose width
specific choice
recently received
r package
powerful tools
new way
maximization algorithm
good properties
generalized expectation
fast implementation
extensive simulations
edge selection
demanding parts
condition number
community detection
art approaches
dc.title.none.fl_str_mv Comparisons of median computation times (in seconds) based on 5 runs for the GEM algorithm and the MCMC methods.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>HMFGraph Gibbs, G-Wishart, and BGGM were run with 5000 iterations. For all <i>p</i>, .</p>
eu_rights_str_mv openAccess
id Manara_3083c8345cc0c24f17cef9addd03b607
identifier_str_mv 10.1371/journal.pcbi.1013614.t002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30493907
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Comparisons of median computation times (in seconds) based on 5 runs for the GEM algorithm and the MCMC methods.Aapo E. Korhonen (22530674)Olli Sarala (22530677)Tuomas Hautamäki (22530680)Markku Kuismin (2170918)Mikko J. Sillanpää (8139792)GeneticsBiotechnologyCancerBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedrecovering meaningful networkspartial correlation networksfalse discovery rateexplain complex relationshipsnovel bayesian approachdimensional omics datasetsbiological example analysesestimated precision matrixlarge datasetshierarchical matrixestimated fbiological variablesbayesian implementationswhose widthspecific choicerecently receivedr packagepowerful toolsnew waymaximization algorithmgood propertiesgeneralized expectationfast implementationextensive simulationsedge selectiondemanding partscondition numbercommunity detectionart approaches<p>HMFGraph Gibbs, G-Wishart, and BGGM were run with 5000 iterations. For all <i>p</i>, .</p>2025-10-30T17:49:42ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pcbi.1013614.t002https://figshare.com/articles/dataset/Comparisons_of_median_computation_times_in_seconds_based_on_5_runs_for_the_GEM_algorithm_and_the_MCMC_methods_/30493907CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/304939072025-10-30T17:49:42Z
spellingShingle Comparisons of median computation times (in seconds) based on 5 runs for the GEM algorithm and the MCMC methods.
Aapo E. Korhonen (22530674)
Genetics
Biotechnology
Cancer
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
recovering meaningful networks
partial correlation networks
false discovery rate
explain complex relationships
novel bayesian approach
dimensional omics datasets
biological example analyses
estimated precision matrix
large datasets
hierarchical matrix
estimated f
biological variables
bayesian implementations
whose width
specific choice
recently received
r package
powerful tools
new way
maximization algorithm
good properties
generalized expectation
fast implementation
extensive simulations
edge selection
demanding parts
condition number
community detection
art approaches
status_str publishedVersion
title Comparisons of median computation times (in seconds) based on 5 runs for the GEM algorithm and the MCMC methods.
title_full Comparisons of median computation times (in seconds) based on 5 runs for the GEM algorithm and the MCMC methods.
title_fullStr Comparisons of median computation times (in seconds) based on 5 runs for the GEM algorithm and the MCMC methods.
title_full_unstemmed Comparisons of median computation times (in seconds) based on 5 runs for the GEM algorithm and the MCMC methods.
title_short Comparisons of median computation times (in seconds) based on 5 runs for the GEM algorithm and the MCMC methods.
title_sort Comparisons of median computation times (in seconds) based on 5 runs for the GEM algorithm and the MCMC methods.
topic Genetics
Biotechnology
Cancer
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
recovering meaningful networks
partial correlation networks
false discovery rate
explain complex relationships
novel bayesian approach
dimensional omics datasets
biological example analyses
estimated precision matrix
large datasets
hierarchical matrix
estimated f
biological variables
bayesian implementations
whose width
specific choice
recently received
r package
powerful tools
new way
maximization algorithm
good properties
generalized expectation
fast implementation
extensive simulations
edge selection
demanding parts
condition number
community detection
art approaches