Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide

Density functional theory (DFT) study of Mo-catalyzed photoreduction of H<sup>+</sup> and CO<sub>2</sub> reveals a metal–ligand cooperative proton transfer/electron transfer (PT/ET) process and an intermolecular acid-assisted protonation mechanism. The key metal–hydride compl...

Descrición completa

Gardado en:
Detalles Bibliográficos
Autor Principal: Zhiyun Hu (17379685) (author)
Outros autores: Shichao Xing (22679908) (author), Qilong Li (5477081) (author), Xiuli Yan (4257142) (author)
Publicado: 2025
Subjects:
Tags: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
_version_ 1849927635523600384
author Zhiyun Hu (17379685)
author2 Shichao Xing (22679908)
Qilong Li (5477081)
Xiuli Yan (4257142)
author2_role author
author
author
author_facet Zhiyun Hu (17379685)
Shichao Xing (22679908)
Qilong Li (5477081)
Xiuli Yan (4257142)
author_role author
dc.creator.none.fl_str_mv Zhiyun Hu (17379685)
Shichao Xing (22679908)
Qilong Li (5477081)
Xiuli Yan (4257142)
dc.date.none.fl_str_mv 2025-11-25T07:29:24Z
dc.identifier.none.fl_str_mv 10.1021/acs.jpca.5c06343.s002
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Metal_Ligand_Cooperative_Proton_Transfer_Electron_Transfer_and_Acid-Assisted_Protonation_Mechanism_for_Mo-Catalyzed_Reduction_of_Proton_and_Carbon_Dioxide/30704425
dc.rights.none.fl_str_mv CC BY-NC 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biophysics
Biochemistry
Microbiology
Molecular Biology
Immunology
Cancer
Infectious Diseases
Computational Biology
Chemical Sciences not elsewhere classified
Physical Sciences not elsewhere classified
sup >+</ sup
provides valuable information
assisted protonation mechanism
sup >< b
13 </ b
mol could explain
gibbs energy barrier
intermolecular protonation rather
4 </ b
initial catalyst mo
generated via two
h </ b
2 </ sub
intramolecular protonation
mol higher
barrier difference
4 kcal
intermolecular acid
transferring electrons
indispensable role
favored product
determining step
crucial role
catalyzed reduction
catalyzed photoreduction
carbonate molecule
c –
7 kcal
1 kcal
0 kcal
dc.title.none.fl_str_mv Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description Density functional theory (DFT) study of Mo-catalyzed photoreduction of H<sup>+</sup> and CO<sub>2</sub> reveals a metal–ligand cooperative proton transfer/electron transfer (PT/ET) process and an intermolecular acid-assisted protonation mechanism. The key metal–hydride complex <sup><b>2</b></sup><b>3 pt-H</b> is generated via two-electron-two-proton reduction of the initial catalyst Mo-2Hqpdt, where the redox noninnocent dithiolene ligand plays a crucial role in accepting and transferring electrons. In the generation of <sup><b>2</b></sup><b>3 pt-H</b>, the one-electron reduction of <sup><b>1</b></sup><b>2 pt</b> to <sup><b>2</b></sup><b>3 pt</b> has a Gibbs energy barrier of 17.8 kcal/mol (<sup><b>1</b></sup><b>4</b> → <b>TS</b><sub><b>ET2</b></sub>) and constitutes the overall rate-determining step for both H<sub>2</sub> and HCOOH formation. The Mo–H moiety in <sup><b>2</b></sup><b>3 pt-H</b> tends to be protonated by a carbonate molecule for the formation of H<sub>2</sub>, which presents a Gibbs energy barrier of 8.7 kcal/mol (<sup><b>2</b></sup><b>13</b> → <sup><b>2</b></sup><b>TS5</b>). Alternatively, the Mo–H could also nucleophilically attack CO<sub>2</sub> to form HCOOH, with a Gibbs energy barrier of 11.1 kcal/mol (<sup><b>2</b></sup><b>3 pt-H</b> → <sup><b>2</b></sup><b>TS6’</b>). Such a barrier difference of 2.4 kcal/mol could explain why H<sub>2</sub> is the favored product in the experiments. The rate-determining step for CO formation is C–O cleavage with a total Gibbs energy barrier of 28.8 kcal/mol (<sup><b>1</b></sup><b>4</b> → <sup><b>2</b></sup><b>TS9</b>), which is 11.0 kcal/mol higher than that of H<sub>2</sub> and HCOOH; therefore, CO is a byproduct in the experiment. Moreover, intermolecular protonation rather than intramolecular protonation in <sup><b>2</b></sup><b>3 pt-H</b> is confirmed as the pathway for H<sub>2</sub> generation, which underscores the indispensable role of a small acid and provides valuable information for suppressing undesired hydrogen evolution.
eu_rights_str_mv openAccess
id Manara_31671831f3d01e7e92f25f8fb774bc3a
identifier_str_mv 10.1021/acs.jpca.5c06343.s002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30704425
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY-NC 4.0
spelling Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon DioxideZhiyun Hu (17379685)Shichao Xing (22679908)Qilong Li (5477081)Xiuli Yan (4257142)BiophysicsBiochemistryMicrobiologyMolecular BiologyImmunologyCancerInfectious DiseasesComputational BiologyChemical Sciences not elsewhere classifiedPhysical Sciences not elsewhere classifiedsup >+</ supprovides valuable informationassisted protonation mechanismsup >< b13 </ bmol could explaingibbs energy barrierintermolecular protonation rather4 </ binitial catalyst mogenerated via twoh </ b2 </ subintramolecular protonationmol higherbarrier difference4 kcalintermolecular acidtransferring electronsindispensable rolefavored productdetermining stepcrucial rolecatalyzed reductioncatalyzed photoreductioncarbonate moleculec –7 kcal1 kcal0 kcalDensity functional theory (DFT) study of Mo-catalyzed photoreduction of H<sup>+</sup> and CO<sub>2</sub> reveals a metal–ligand cooperative proton transfer/electron transfer (PT/ET) process and an intermolecular acid-assisted protonation mechanism. The key metal–hydride complex <sup><b>2</b></sup><b>3 pt-H</b> is generated via two-electron-two-proton reduction of the initial catalyst Mo-2Hqpdt, where the redox noninnocent dithiolene ligand plays a crucial role in accepting and transferring electrons. In the generation of <sup><b>2</b></sup><b>3 pt-H</b>, the one-electron reduction of <sup><b>1</b></sup><b>2 pt</b> to <sup><b>2</b></sup><b>3 pt</b> has a Gibbs energy barrier of 17.8 kcal/mol (<sup><b>1</b></sup><b>4</b> → <b>TS</b><sub><b>ET2</b></sub>) and constitutes the overall rate-determining step for both H<sub>2</sub> and HCOOH formation. The Mo–H moiety in <sup><b>2</b></sup><b>3 pt-H</b> tends to be protonated by a carbonate molecule for the formation of H<sub>2</sub>, which presents a Gibbs energy barrier of 8.7 kcal/mol (<sup><b>2</b></sup><b>13</b> → <sup><b>2</b></sup><b>TS5</b>). Alternatively, the Mo–H could also nucleophilically attack CO<sub>2</sub> to form HCOOH, with a Gibbs energy barrier of 11.1 kcal/mol (<sup><b>2</b></sup><b>3 pt-H</b> → <sup><b>2</b></sup><b>TS6’</b>). Such a barrier difference of 2.4 kcal/mol could explain why H<sub>2</sub> is the favored product in the experiments. The rate-determining step for CO formation is C–O cleavage with a total Gibbs energy barrier of 28.8 kcal/mol (<sup><b>1</b></sup><b>4</b> → <sup><b>2</b></sup><b>TS9</b>), which is 11.0 kcal/mol higher than that of H<sub>2</sub> and HCOOH; therefore, CO is a byproduct in the experiment. Moreover, intermolecular protonation rather than intramolecular protonation in <sup><b>2</b></sup><b>3 pt-H</b> is confirmed as the pathway for H<sub>2</sub> generation, which underscores the indispensable role of a small acid and provides valuable information for suppressing undesired hydrogen evolution.2025-11-25T07:29:24ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1021/acs.jpca.5c06343.s002https://figshare.com/articles/dataset/Metal_Ligand_Cooperative_Proton_Transfer_Electron_Transfer_and_Acid-Assisted_Protonation_Mechanism_for_Mo-Catalyzed_Reduction_of_Proton_and_Carbon_Dioxide/30704425CC BY-NC 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307044252025-11-25T07:29:24Z
spellingShingle Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide
Zhiyun Hu (17379685)
Biophysics
Biochemistry
Microbiology
Molecular Biology
Immunology
Cancer
Infectious Diseases
Computational Biology
Chemical Sciences not elsewhere classified
Physical Sciences not elsewhere classified
sup >+</ sup
provides valuable information
assisted protonation mechanism
sup >< b
13 </ b
mol could explain
gibbs energy barrier
intermolecular protonation rather
4 </ b
initial catalyst mo
generated via two
h </ b
2 </ sub
intramolecular protonation
mol higher
barrier difference
4 kcal
intermolecular acid
transferring electrons
indispensable role
favored product
determining step
crucial role
catalyzed reduction
catalyzed photoreduction
carbonate molecule
c –
7 kcal
1 kcal
0 kcal
status_str publishedVersion
title Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide
title_full Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide
title_fullStr Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide
title_full_unstemmed Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide
title_short Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide
title_sort Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide
topic Biophysics
Biochemistry
Microbiology
Molecular Biology
Immunology
Cancer
Infectious Diseases
Computational Biology
Chemical Sciences not elsewhere classified
Physical Sciences not elsewhere classified
sup >+</ sup
provides valuable information
assisted protonation mechanism
sup >< b
13 </ b
mol could explain
gibbs energy barrier
intermolecular protonation rather
4 </ b
initial catalyst mo
generated via two
h </ b
2 </ sub
intramolecular protonation
mol higher
barrier difference
4 kcal
intermolecular acid
transferring electrons
indispensable role
favored product
determining step
crucial role
catalyzed reduction
catalyzed photoreduction
carbonate molecule
c –
7 kcal
1 kcal
0 kcal