Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide
Density functional theory (DFT) study of Mo-catalyzed photoreduction of H<sup>+</sup> and CO<sub>2</sub> reveals a metal–ligand cooperative proton transfer/electron transfer (PT/ET) process and an intermolecular acid-assisted protonation mechanism. The key metal–hydride compl...
Gardado en:
| Autor Principal: | |
|---|---|
| Outros autores: | , , |
| Publicado: |
2025
|
| Subjects: | |
| Tags: |
Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
|
| _version_ | 1849927635523600384 |
|---|---|
| author | Zhiyun Hu (17379685) |
| author2 | Shichao Xing (22679908) Qilong Li (5477081) Xiuli Yan (4257142) |
| author2_role | author author author |
| author_facet | Zhiyun Hu (17379685) Shichao Xing (22679908) Qilong Li (5477081) Xiuli Yan (4257142) |
| author_role | author |
| dc.creator.none.fl_str_mv | Zhiyun Hu (17379685) Shichao Xing (22679908) Qilong Li (5477081) Xiuli Yan (4257142) |
| dc.date.none.fl_str_mv | 2025-11-25T07:29:24Z |
| dc.identifier.none.fl_str_mv | 10.1021/acs.jpca.5c06343.s002 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/dataset/Metal_Ligand_Cooperative_Proton_Transfer_Electron_Transfer_and_Acid-Assisted_Protonation_Mechanism_for_Mo-Catalyzed_Reduction_of_Proton_and_Carbon_Dioxide/30704425 |
| dc.rights.none.fl_str_mv | CC BY-NC 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Biophysics Biochemistry Microbiology Molecular Biology Immunology Cancer Infectious Diseases Computational Biology Chemical Sciences not elsewhere classified Physical Sciences not elsewhere classified sup >+</ sup provides valuable information assisted protonation mechanism sup >< b 13 </ b mol could explain gibbs energy barrier intermolecular protonation rather 4 </ b initial catalyst mo generated via two h </ b 2 </ sub intramolecular protonation mol higher barrier difference 4 kcal intermolecular acid transferring electrons indispensable role favored product determining step crucial role catalyzed reduction catalyzed photoreduction carbonate molecule c – 7 kcal 1 kcal 0 kcal |
| dc.title.none.fl_str_mv | Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide |
| dc.type.none.fl_str_mv | Dataset info:eu-repo/semantics/publishedVersion dataset |
| description | Density functional theory (DFT) study of Mo-catalyzed photoreduction of H<sup>+</sup> and CO<sub>2</sub> reveals a metal–ligand cooperative proton transfer/electron transfer (PT/ET) process and an intermolecular acid-assisted protonation mechanism. The key metal–hydride complex <sup><b>2</b></sup><b>3 pt-H</b> is generated via two-electron-two-proton reduction of the initial catalyst Mo-2Hqpdt, where the redox noninnocent dithiolene ligand plays a crucial role in accepting and transferring electrons. In the generation of <sup><b>2</b></sup><b>3 pt-H</b>, the one-electron reduction of <sup><b>1</b></sup><b>2 pt</b> to <sup><b>2</b></sup><b>3 pt</b> has a Gibbs energy barrier of 17.8 kcal/mol (<sup><b>1</b></sup><b>4</b> → <b>TS</b><sub><b>ET2</b></sub>) and constitutes the overall rate-determining step for both H<sub>2</sub> and HCOOH formation. The Mo–H moiety in <sup><b>2</b></sup><b>3 pt-H</b> tends to be protonated by a carbonate molecule for the formation of H<sub>2</sub>, which presents a Gibbs energy barrier of 8.7 kcal/mol (<sup><b>2</b></sup><b>13</b> → <sup><b>2</b></sup><b>TS5</b>). Alternatively, the Mo–H could also nucleophilically attack CO<sub>2</sub> to form HCOOH, with a Gibbs energy barrier of 11.1 kcal/mol (<sup><b>2</b></sup><b>3 pt-H</b> → <sup><b>2</b></sup><b>TS6’</b>). Such a barrier difference of 2.4 kcal/mol could explain why H<sub>2</sub> is the favored product in the experiments. The rate-determining step for CO formation is C–O cleavage with a total Gibbs energy barrier of 28.8 kcal/mol (<sup><b>1</b></sup><b>4</b> → <sup><b>2</b></sup><b>TS9</b>), which is 11.0 kcal/mol higher than that of H<sub>2</sub> and HCOOH; therefore, CO is a byproduct in the experiment. Moreover, intermolecular protonation rather than intramolecular protonation in <sup><b>2</b></sup><b>3 pt-H</b> is confirmed as the pathway for H<sub>2</sub> generation, which underscores the indispensable role of a small acid and provides valuable information for suppressing undesired hydrogen evolution. |
| eu_rights_str_mv | openAccess |
| id | Manara_31671831f3d01e7e92f25f8fb774bc3a |
| identifier_str_mv | 10.1021/acs.jpca.5c06343.s002 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/30704425 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY-NC 4.0 |
| spelling | Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon DioxideZhiyun Hu (17379685)Shichao Xing (22679908)Qilong Li (5477081)Xiuli Yan (4257142)BiophysicsBiochemistryMicrobiologyMolecular BiologyImmunologyCancerInfectious DiseasesComputational BiologyChemical Sciences not elsewhere classifiedPhysical Sciences not elsewhere classifiedsup >+</ supprovides valuable informationassisted protonation mechanismsup >< b13 </ bmol could explaingibbs energy barrierintermolecular protonation rather4 </ binitial catalyst mogenerated via twoh </ b2 </ subintramolecular protonationmol higherbarrier difference4 kcalintermolecular acidtransferring electronsindispensable rolefavored productdetermining stepcrucial rolecatalyzed reductioncatalyzed photoreductioncarbonate moleculec –7 kcal1 kcal0 kcalDensity functional theory (DFT) study of Mo-catalyzed photoreduction of H<sup>+</sup> and CO<sub>2</sub> reveals a metal–ligand cooperative proton transfer/electron transfer (PT/ET) process and an intermolecular acid-assisted protonation mechanism. The key metal–hydride complex <sup><b>2</b></sup><b>3 pt-H</b> is generated via two-electron-two-proton reduction of the initial catalyst Mo-2Hqpdt, where the redox noninnocent dithiolene ligand plays a crucial role in accepting and transferring electrons. In the generation of <sup><b>2</b></sup><b>3 pt-H</b>, the one-electron reduction of <sup><b>1</b></sup><b>2 pt</b> to <sup><b>2</b></sup><b>3 pt</b> has a Gibbs energy barrier of 17.8 kcal/mol (<sup><b>1</b></sup><b>4</b> → <b>TS</b><sub><b>ET2</b></sub>) and constitutes the overall rate-determining step for both H<sub>2</sub> and HCOOH formation. The Mo–H moiety in <sup><b>2</b></sup><b>3 pt-H</b> tends to be protonated by a carbonate molecule for the formation of H<sub>2</sub>, which presents a Gibbs energy barrier of 8.7 kcal/mol (<sup><b>2</b></sup><b>13</b> → <sup><b>2</b></sup><b>TS5</b>). Alternatively, the Mo–H could also nucleophilically attack CO<sub>2</sub> to form HCOOH, with a Gibbs energy barrier of 11.1 kcal/mol (<sup><b>2</b></sup><b>3 pt-H</b> → <sup><b>2</b></sup><b>TS6’</b>). Such a barrier difference of 2.4 kcal/mol could explain why H<sub>2</sub> is the favored product in the experiments. The rate-determining step for CO formation is C–O cleavage with a total Gibbs energy barrier of 28.8 kcal/mol (<sup><b>1</b></sup><b>4</b> → <sup><b>2</b></sup><b>TS9</b>), which is 11.0 kcal/mol higher than that of H<sub>2</sub> and HCOOH; therefore, CO is a byproduct in the experiment. Moreover, intermolecular protonation rather than intramolecular protonation in <sup><b>2</b></sup><b>3 pt-H</b> is confirmed as the pathway for H<sub>2</sub> generation, which underscores the indispensable role of a small acid and provides valuable information for suppressing undesired hydrogen evolution.2025-11-25T07:29:24ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1021/acs.jpca.5c06343.s002https://figshare.com/articles/dataset/Metal_Ligand_Cooperative_Proton_Transfer_Electron_Transfer_and_Acid-Assisted_Protonation_Mechanism_for_Mo-Catalyzed_Reduction_of_Proton_and_Carbon_Dioxide/30704425CC BY-NC 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307044252025-11-25T07:29:24Z |
| spellingShingle | Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide Zhiyun Hu (17379685) Biophysics Biochemistry Microbiology Molecular Biology Immunology Cancer Infectious Diseases Computational Biology Chemical Sciences not elsewhere classified Physical Sciences not elsewhere classified sup >+</ sup provides valuable information assisted protonation mechanism sup >< b 13 </ b mol could explain gibbs energy barrier intermolecular protonation rather 4 </ b initial catalyst mo generated via two h </ b 2 </ sub intramolecular protonation mol higher barrier difference 4 kcal intermolecular acid transferring electrons indispensable role favored product determining step crucial role catalyzed reduction catalyzed photoreduction carbonate molecule c – 7 kcal 1 kcal 0 kcal |
| status_str | publishedVersion |
| title | Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide |
| title_full | Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide |
| title_fullStr | Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide |
| title_full_unstemmed | Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide |
| title_short | Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide |
| title_sort | Metal–Ligand Cooperative Proton Transfer/Electron Transfer and Acid-Assisted Protonation Mechanism for Mo-Catalyzed Reduction of Proton and Carbon Dioxide |
| topic | Biophysics Biochemistry Microbiology Molecular Biology Immunology Cancer Infectious Diseases Computational Biology Chemical Sciences not elsewhere classified Physical Sciences not elsewhere classified sup >+</ sup provides valuable information assisted protonation mechanism sup >< b 13 </ b mol could explain gibbs energy barrier intermolecular protonation rather 4 </ b initial catalyst mo generated via two h </ b 2 </ sub intramolecular protonation mol higher barrier difference 4 kcal intermolecular acid transferring electrons indispensable role favored product determining step crucial role catalyzed reduction catalyzed photoreduction carbonate molecule c – 7 kcal 1 kcal 0 kcal |