Classifier errors of AdaBoostM1 based on HDD multi-in accuracy & fault prediction.

<p>Classifier errors of AdaBoostM1 based on HDD multi-in accuracy & fault prediction.</p>

Saved in:
Bibliographic Details
Main Author: Muhammad Asim Shahid (15285640) (author)
Other Authors: Muhammad Mansoor Alam (15285643) (author), Mazliham Mohd Su’ud (15285646) (author)
Published: 2024
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852024743177224192
author Muhammad Asim Shahid (15285640)
author2 Muhammad Mansoor Alam (15285643)
Mazliham Mohd Su’ud (15285646)
author2_role author
author
author_facet Muhammad Asim Shahid (15285640)
Muhammad Mansoor Alam (15285643)
Mazliham Mohd Su’ud (15285646)
author_role author
dc.creator.none.fl_str_mv Muhammad Asim Shahid (15285640)
Muhammad Mansoor Alam (15285643)
Mazliham Mohd Su’ud (15285646)
dc.date.none.fl_str_mv 2024-12-03T18:38:01Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0311089.g046
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Classifier_errors_of_AdaBoostM1_based_on_HDD_multi-in_accuracy_fault_prediction_/27955912
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biotechnology
Plant Biology
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
simplified resource allocation
recent years due
naive bayes tree
mem multi classifier
hdd multi classifier
primary data results
nb tree ).
less fault prediction
fact based analysis
highest accuracy percentage
mem mono classifier
10 folds cross
highest accuracy rate
78 %, 95
good algorithm complexity
nb tree
fault prediction
highest accuracy
mono classifier
95 %,
accuracy rate
fold cross
decision tree
time complexity
algorithm complexity
9 %,
xlink ">
taking 1
past decade
many corporations
make modifications
least amount
increased significantly
improving reliability
exponential rise
ensure accessibility
dl4jmlp ),
decision trees
9 seconds
11 seconds
dc.title.none.fl_str_mv Classifier errors of AdaBoostM1 based on HDD multi-in accuracy & fault prediction.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Classifier errors of AdaBoostM1 based on HDD multi-in accuracy & fault prediction.</p>
eu_rights_str_mv openAccess
id Manara_320dd7fd7b3a009ec78736eb0f726cfc
identifier_str_mv 10.1371/journal.pone.0311089.g046
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/27955912
publishDate 2024
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Classifier errors of AdaBoostM1 based on HDD multi-in accuracy & fault prediction.Muhammad Asim Shahid (15285640)Muhammad Mansoor Alam (15285643)Mazliham Mohd Su’ud (15285646)BiotechnologyPlant BiologySpace ScienceEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedsimplified resource allocationrecent years duenaive bayes treemem multi classifierhdd multi classifierprimary data resultsnb tree ).less fault predictionfact based analysishighest accuracy percentagemem mono classifier10 folds crosshighest accuracy rate78 %, 95good algorithm complexitynb treefault predictionhighest accuracymono classifier95 %,accuracy ratefold crossdecision treetime complexityalgorithm complexity9 %,xlink ">taking 1past decademany corporationsmake modificationsleast amountincreased significantlyimproving reliabilityexponential riseensure accessibilitydl4jmlp ),decision trees9 seconds11 seconds<p>Classifier errors of AdaBoostM1 based on HDD multi-in accuracy & fault prediction.</p>2024-12-03T18:38:01ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0311089.g046https://figshare.com/articles/figure/Classifier_errors_of_AdaBoostM1_based_on_HDD_multi-in_accuracy_fault_prediction_/27955912CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/279559122024-12-03T18:38:01Z
spellingShingle Classifier errors of AdaBoostM1 based on HDD multi-in accuracy & fault prediction.
Muhammad Asim Shahid (15285640)
Biotechnology
Plant Biology
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
simplified resource allocation
recent years due
naive bayes tree
mem multi classifier
hdd multi classifier
primary data results
nb tree ).
less fault prediction
fact based analysis
highest accuracy percentage
mem mono classifier
10 folds cross
highest accuracy rate
78 %, 95
good algorithm complexity
nb tree
fault prediction
highest accuracy
mono classifier
95 %,
accuracy rate
fold cross
decision tree
time complexity
algorithm complexity
9 %,
xlink ">
taking 1
past decade
many corporations
make modifications
least amount
increased significantly
improving reliability
exponential rise
ensure accessibility
dl4jmlp ),
decision trees
9 seconds
11 seconds
status_str publishedVersion
title Classifier errors of AdaBoostM1 based on HDD multi-in accuracy & fault prediction.
title_full Classifier errors of AdaBoostM1 based on HDD multi-in accuracy & fault prediction.
title_fullStr Classifier errors of AdaBoostM1 based on HDD multi-in accuracy & fault prediction.
title_full_unstemmed Classifier errors of AdaBoostM1 based on HDD multi-in accuracy & fault prediction.
title_short Classifier errors of AdaBoostM1 based on HDD multi-in accuracy & fault prediction.
title_sort Classifier errors of AdaBoostM1 based on HDD multi-in accuracy & fault prediction.
topic Biotechnology
Plant Biology
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
simplified resource allocation
recent years due
naive bayes tree
mem multi classifier
hdd multi classifier
primary data results
nb tree ).
less fault prediction
fact based analysis
highest accuracy percentage
mem mono classifier
10 folds cross
highest accuracy rate
78 %, 95
good algorithm complexity
nb tree
fault prediction
highest accuracy
mono classifier
95 %,
accuracy rate
fold cross
decision tree
time complexity
algorithm complexity
9 %,
xlink ">
taking 1
past decade
many corporations
make modifications
least amount
increased significantly
improving reliability
exponential rise
ensure accessibility
dl4jmlp ),
decision trees
9 seconds
11 seconds