_version_ 1852019086918156288
author Jiuxiao Cao (21594403)
author2 Rui Zhu (305217)
Zhen Wang (72451)
Jun Wang (5906)
Guohao Shi (21594406)
Peng Chu (5565407)
author2_role author
author
author
author
author
author_facet Jiuxiao Cao (21594403)
Rui Zhu (305217)
Zhen Wang (72451)
Jun Wang (5906)
Guohao Shi (21594406)
Peng Chu (5565407)
author_role author
dc.creator.none.fl_str_mv Jiuxiao Cao (21594403)
Rui Zhu (305217)
Zhen Wang (72451)
Jun Wang (5906)
Guohao Shi (21594406)
Peng Chu (5565407)
dc.date.none.fl_str_mv 2025-06-24T17:41:02Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0326536.g018
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Five-fold_cross-validation_results_of_mulit-scale_CNN_algorithm_at_different_SNRs_/29393968
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Space Science
Biological Sciences not elsewhere classified
spatial feature diversity
sequential learning capacity
remote communications due
hybrid architecture enhances
evaluated using five
ensure statistical reliability
different receptive fields
dataset includes 45
common shortwave protocols
captures temporal dependencies
3gale &# 8212
000 labeled samples
subcarrier modulations based
scale convolutional gru
robust signal classification
subcarrier classification
low signal
world sources
vital role
time deployment
study proposes
standard gpu
selective fading
scalable solution
results show
results confirm
range capabilities
protocol identification
noise ratios
multipath propagation
inference time
gru provides
fold cross
disaster relief
dimensional representations
bidirectional gru
based real
8 db
10 db
dc.title.none.fl_str_mv Five-fold cross-validation results of mulit-scale CNN algorithm at different SNRs.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Five-fold cross-validation results of mulit-scale CNN algorithm at different SNRs.</p>
eu_rights_str_mv openAccess
id Manara_320ddda075b677524dd83a4e06a1bf4b
identifier_str_mv 10.1371/journal.pone.0326536.g018
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29393968
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Five-fold cross-validation results of mulit-scale CNN algorithm at different SNRs.Jiuxiao Cao (21594403)Rui Zhu (305217)Zhen Wang (72451)Jun Wang (5906)Guohao Shi (21594406)Peng Chu (5565407)Space ScienceBiological Sciences not elsewhere classifiedspatial feature diversitysequential learning capacityremote communications duehybrid architecture enhancesevaluated using fiveensure statistical reliabilitydifferent receptive fieldsdataset includes 45common shortwave protocolscaptures temporal dependencies3gale &# 8212000 labeled samplessubcarrier modulations basedscale convolutional grurobust signal classificationsubcarrier classificationlow signalworld sourcesvital roletime deploymentstudy proposesstandard gpuselective fadingscalable solutionresults showresults confirmrange capabilitiesprotocol identificationnoise ratiosmultipath propagationinference timegru providesfold crossdisaster reliefdimensional representationsbidirectional grubased real8 db10 db<p>Five-fold cross-validation results of mulit-scale CNN algorithm at different SNRs.</p>2025-06-24T17:41:02ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0326536.g018https://figshare.com/articles/figure/Five-fold_cross-validation_results_of_mulit-scale_CNN_algorithm_at_different_SNRs_/29393968CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/293939682025-06-24T17:41:02Z
spellingShingle Five-fold cross-validation results of mulit-scale CNN algorithm at different SNRs.
Jiuxiao Cao (21594403)
Space Science
Biological Sciences not elsewhere classified
spatial feature diversity
sequential learning capacity
remote communications due
hybrid architecture enhances
evaluated using five
ensure statistical reliability
different receptive fields
dataset includes 45
common shortwave protocols
captures temporal dependencies
3gale &# 8212
000 labeled samples
subcarrier modulations based
scale convolutional gru
robust signal classification
subcarrier classification
low signal
world sources
vital role
time deployment
study proposes
standard gpu
selective fading
scalable solution
results show
results confirm
range capabilities
protocol identification
noise ratios
multipath propagation
inference time
gru provides
fold cross
disaster relief
dimensional representations
bidirectional gru
based real
8 db
10 db
status_str publishedVersion
title Five-fold cross-validation results of mulit-scale CNN algorithm at different SNRs.
title_full Five-fold cross-validation results of mulit-scale CNN algorithm at different SNRs.
title_fullStr Five-fold cross-validation results of mulit-scale CNN algorithm at different SNRs.
title_full_unstemmed Five-fold cross-validation results of mulit-scale CNN algorithm at different SNRs.
title_short Five-fold cross-validation results of mulit-scale CNN algorithm at different SNRs.
title_sort Five-fold cross-validation results of mulit-scale CNN algorithm at different SNRs.
topic Space Science
Biological Sciences not elsewhere classified
spatial feature diversity
sequential learning capacity
remote communications due
hybrid architecture enhances
evaluated using five
ensure statistical reliability
different receptive fields
dataset includes 45
common shortwave protocols
captures temporal dependencies
3gale &# 8212
000 labeled samples
subcarrier modulations based
scale convolutional gru
robust signal classification
subcarrier classification
low signal
world sources
vital role
time deployment
study proposes
standard gpu
selective fading
scalable solution
results show
results confirm
range capabilities
protocol identification
noise ratios
multipath propagation
inference time
gru provides
fold cross
disaster relief
dimensional representations
bidirectional gru
based real
8 db
10 db