Embedding vs. reconstruction-level contrast (RLC).

<p>Top: the encoder consumes two inputs (the original graph and an augmented view) and contrasts their node embeddings in the embedding space. Bottom: DCOR uses dual autoencoders to reconstruct the adjacency and the attribute matrices for the original graph and the augmented view, then applies...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
מחבר ראשי: Hossein Rafieizadeh (22676722) (author)
מחברים אחרים: Hadi Zare (20073000) (author), Mohsen Ghassemi Parsa (22676725) (author), Hocine Cherifi (8177628) (author)
יצא לאור: 2025
נושאים:
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
תיאור
סיכום:<p>Top: the encoder consumes two inputs (the original graph and an augmented view) and contrasts their node embeddings in the embedding space. Bottom: DCOR uses dual autoencoders to reconstruct the adjacency and the attribute matrices for the original graph and the augmented view, then applies contrastive learning directly to the two sets of reconstructions, which preserves cross-view discrepancies that message passing may smooth out.</p>