Hyperparameter optimization results obtained with Optuna
<p dir="ltr">The top panel shows the optimization history, i.e., the evolution of the objective value across trials.<br>The bottom panels display the slice plots, illustrating the relationship between each hyperparameter (the activation function σ, the number of hidden layers ,...
Saved in:
| Main Author: | |
|---|---|
| Other Authors: | , , |
| Published: |
2025
|
| Subjects: | |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1852016553300590592 |
|---|---|
| author | Oscar Rincón Cardeño (22258780) |
| author2 | Silvana Montoya-Noguera (22258901) Nicolas Guarin-Zapata (6532391) Gregorio Perez Bernal (22258905) |
| author2_role | author author author |
| author_facet | Oscar Rincón Cardeño (22258780) Silvana Montoya-Noguera (22258901) Nicolas Guarin-Zapata (6532391) Gregorio Perez Bernal (22258905) |
| author_role | author |
| dc.creator.none.fl_str_mv | Oscar Rincón Cardeño (22258780) Silvana Montoya-Noguera (22258901) Nicolas Guarin-Zapata (6532391) Gregorio Perez Bernal (22258905) |
| dc.date.none.fl_str_mv | 2025-09-16T20:07:09Z |
| dc.identifier.none.fl_str_mv | 10.6084/m9.figshare.30141664.v1 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/dataset/Hyperparameter_optimization_results_obtained_with_Optuna/30141664 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Neural networks Machine learning not elsewhere classified Applied mathematics not elsewhere classified Neural network Hyperparameter optimization |
| dc.title.none.fl_str_mv | Hyperparameter optimization results obtained with Optuna |
| dc.type.none.fl_str_mv | Dataset info:eu-repo/semantics/publishedVersion dataset |
| description | <p dir="ltr">The top panel shows the optimization history, i.e., the evolution of the objective value across trials.<br>The bottom panels display the slice plots, illustrating the relationship between each hyperparameter (the activation function σ, the number of hidden layers , the number of neurons per layer , and the learning rate α of the Adam optimizer) and the achieved objective value.</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_36245d100c55f6ac65c94de2ae505720 |
| identifier_str_mv | 10.6084/m9.figshare.30141664.v1 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/30141664 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | Hyperparameter optimization results obtained with OptunaOscar Rincón Cardeño (22258780)Silvana Montoya-Noguera (22258901)Nicolas Guarin-Zapata (6532391)Gregorio Perez Bernal (22258905)Neural networksMachine learning not elsewhere classifiedApplied mathematics not elsewhere classifiedNeural networkHyperparameter optimization<p dir="ltr">The top panel shows the optimization history, i.e., the evolution of the objective value across trials.<br>The bottom panels display the slice plots, illustrating the relationship between each hyperparameter (the activation function σ, the number of hidden layers , the number of neurons per layer , and the learning rate α of the Adam optimizer) and the achieved objective value.</p>2025-09-16T20:07:09ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.6084/m9.figshare.30141664.v1https://figshare.com/articles/dataset/Hyperparameter_optimization_results_obtained_with_Optuna/30141664CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/301416642025-09-16T20:07:09Z |
| spellingShingle | Hyperparameter optimization results obtained with Optuna Oscar Rincón Cardeño (22258780) Neural networks Machine learning not elsewhere classified Applied mathematics not elsewhere classified Neural network Hyperparameter optimization |
| status_str | publishedVersion |
| title | Hyperparameter optimization results obtained with Optuna |
| title_full | Hyperparameter optimization results obtained with Optuna |
| title_fullStr | Hyperparameter optimization results obtained with Optuna |
| title_full_unstemmed | Hyperparameter optimization results obtained with Optuna |
| title_short | Hyperparameter optimization results obtained with Optuna |
| title_sort | Hyperparameter optimization results obtained with Optuna |
| topic | Neural networks Machine learning not elsewhere classified Applied mathematics not elsewhere classified Neural network Hyperparameter optimization |