Accuracy & loss curves of the DenseNet201-Infused Parallel SE-CNN for OpenRecycle Dataset.

<p>Accuracy & loss curves of the DenseNet201-Infused Parallel SE-CNN for OpenRecycle Dataset.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Md. Minhazul Islam (20632931) (author)
مؤلفون آخرون: S. M. Mahedy Hasan (19942286) (author), Md. Rakib Hossain (9612524) (author), Md. Palash Uddin (19139222) (author), Md. Al Mamun (12800084) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852019659219402752
author Md. Minhazul Islam (20632931)
author2 S. M. Mahedy Hasan (19942286)
Md. Rakib Hossain (9612524)
Md. Palash Uddin (19139222)
Md. Al Mamun (12800084)
author2_role author
author
author
author
author_facet Md. Minhazul Islam (20632931)
S. M. Mahedy Hasan (19942286)
Md. Rakib Hossain (9612524)
Md. Palash Uddin (19139222)
Md. Al Mamun (12800084)
author_role author
dc.creator.none.fl_str_mv Md. Minhazul Islam (20632931)
S. M. Mahedy Hasan (19942286)
Md. Rakib Hossain (9612524)
Md. Palash Uddin (19139222)
Md. Al Mamun (12800084)
dc.date.none.fl_str_mv 2025-06-04T17:48:05Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0324294.g012
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Accuracy_loss_curves_of_the_DenseNet201-Infused_Parallel_SE-CNN_for_OpenRecycle_Dataset_/29239339
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Ecology
Science Policy
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
translating theoretical advancements
towards sustainable solutions
three additional datasets
smart cities progress
recycling processes depend
promoting environmental sustainability
promising heightened efficiency
model &# 8217
become increasingly vital
restoring waste materials
enhance waste diversity
effective waste collection
waste management practices
adaptable waste classification
waste data
xlink ">
work presents
transparent decision
tangible stride
successful deployment
study presents
reducing pollution
recent years
precise solution
paradigm shift
original states
irrelevant features
integrated squeeze
including capturing
important ones
ground implementation
focus areas
distinguishable features
deep learning
current context
attention mechanism
applied strategically
accurately identifying
dc.title.none.fl_str_mv Accuracy & loss curves of the DenseNet201-Infused Parallel SE-CNN for OpenRecycle Dataset.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Accuracy & loss curves of the DenseNet201-Infused Parallel SE-CNN for OpenRecycle Dataset.</p>
eu_rights_str_mv openAccess
id Manara_366a3cfcbc17274a0c57947c486c29aa
identifier_str_mv 10.1371/journal.pone.0324294.g012
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29239339
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Accuracy & loss curves of the DenseNet201-Infused Parallel SE-CNN for OpenRecycle Dataset.Md. Minhazul Islam (20632931)S. M. Mahedy Hasan (19942286)Md. Rakib Hossain (9612524)Md. Palash Uddin (19139222)Md. Al Mamun (12800084)EcologyScience PolicySpace ScienceEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedtranslating theoretical advancementstowards sustainable solutionsthree additional datasetssmart cities progressrecycling processes dependpromoting environmental sustainabilitypromising heightened efficiencymodel &# 8217become increasingly vitalrestoring waste materialsenhance waste diversityeffective waste collectionwaste management practicesadaptable waste classificationwaste dataxlink ">work presentstransparent decisiontangible stridesuccessful deploymentstudy presentsreducing pollutionrecent yearsprecise solutionparadigm shiftoriginal statesirrelevant featuresintegrated squeezeincluding capturingimportant onesground implementationfocus areasdistinguishable featuresdeep learningcurrent contextattention mechanismapplied strategicallyaccurately identifying<p>Accuracy & loss curves of the DenseNet201-Infused Parallel SE-CNN for OpenRecycle Dataset.</p>2025-06-04T17:48:05ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0324294.g012https://figshare.com/articles/figure/Accuracy_loss_curves_of_the_DenseNet201-Infused_Parallel_SE-CNN_for_OpenRecycle_Dataset_/29239339CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/292393392025-06-04T17:48:05Z
spellingShingle Accuracy & loss curves of the DenseNet201-Infused Parallel SE-CNN for OpenRecycle Dataset.
Md. Minhazul Islam (20632931)
Ecology
Science Policy
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
translating theoretical advancements
towards sustainable solutions
three additional datasets
smart cities progress
recycling processes depend
promoting environmental sustainability
promising heightened efficiency
model &# 8217
become increasingly vital
restoring waste materials
enhance waste diversity
effective waste collection
waste management practices
adaptable waste classification
waste data
xlink ">
work presents
transparent decision
tangible stride
successful deployment
study presents
reducing pollution
recent years
precise solution
paradigm shift
original states
irrelevant features
integrated squeeze
including capturing
important ones
ground implementation
focus areas
distinguishable features
deep learning
current context
attention mechanism
applied strategically
accurately identifying
status_str publishedVersion
title Accuracy & loss curves of the DenseNet201-Infused Parallel SE-CNN for OpenRecycle Dataset.
title_full Accuracy & loss curves of the DenseNet201-Infused Parallel SE-CNN for OpenRecycle Dataset.
title_fullStr Accuracy & loss curves of the DenseNet201-Infused Parallel SE-CNN for OpenRecycle Dataset.
title_full_unstemmed Accuracy & loss curves of the DenseNet201-Infused Parallel SE-CNN for OpenRecycle Dataset.
title_short Accuracy & loss curves of the DenseNet201-Infused Parallel SE-CNN for OpenRecycle Dataset.
title_sort Accuracy & loss curves of the DenseNet201-Infused Parallel SE-CNN for OpenRecycle Dataset.
topic Ecology
Science Policy
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
translating theoretical advancements
towards sustainable solutions
three additional datasets
smart cities progress
recycling processes depend
promoting environmental sustainability
promising heightened efficiency
model &# 8217
become increasingly vital
restoring waste materials
enhance waste diversity
effective waste collection
waste management practices
adaptable waste classification
waste data
xlink ">
work presents
transparent decision
tangible stride
successful deployment
study presents
reducing pollution
recent years
precise solution
paradigm shift
original states
irrelevant features
integrated squeeze
including capturing
important ones
ground implementation
focus areas
distinguishable features
deep learning
current context
attention mechanism
applied strategically
accurately identifying