Multi-class segmentation performances of Mask R-CNN algorithms on a test dataset.
<p>Multi-class segmentation performances of Mask R-CNN algorithms on a test dataset.</p>
Saved in:
| Main Author: | |
|---|---|
| Other Authors: | , , |
| Published: |
2024
|
| Subjects: | |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1852024007029686272 |
|---|---|
| author | Dennis Dennis (20490126) |
| author2 | Siriwan Suebnukarn (13360640) Sothana Vicharueang (13360649) Wasit Limprasert (13360637) |
| author2_role | author author author |
| author_facet | Dennis Dennis (20490126) Siriwan Suebnukarn (13360640) Sothana Vicharueang (13360649) Wasit Limprasert (13360637) |
| author_role | author |
| dc.creator.none.fl_str_mv | Dennis Dennis (20490126) Siriwan Suebnukarn (13360640) Sothana Vicharueang (13360649) Wasit Limprasert (13360637) |
| dc.date.none.fl_str_mv | 2024-12-31T18:56:21Z |
| dc.identifier.none.fl_str_mv | 10.1371/journal.pone.0310925.t002 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/dataset/Multi-class_segmentation_performances_of_Mask_R-CNN_algorithms_on_a_test_dataset_/28118136 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Medicine Science Policy Biological Sciences not elsewhere classified thammasat university hospital surgical endodontic treatment independent 120 images 90 &# 8211 89 &# 8211 85 &# 8211 81 &# 8211 72 &# 8211 predict class label periapical radiographic images based segmentation model 94 ), 0 85 ), 0 preoperative radiographic images mean average precision endodontists significantly improved 88 &# 8211 83 &# 8211 95 ), respectively cnn prediction model prediction metrics periapical radiographs model training ci 0 predict non year follow xlink "> wise segment test set study aimed recall curve predicting outcomes obtained retrospectively mask region mask r general practitioners deep learning 1200 teeth |
| dc.title.none.fl_str_mv | Multi-class segmentation performances of Mask R-CNN algorithms on a test dataset. |
| dc.type.none.fl_str_mv | Dataset info:eu-repo/semantics/publishedVersion dataset |
| description | <p>Multi-class segmentation performances of Mask R-CNN algorithms on a test dataset.</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_39512e748e4ee8d24b8bda4701ed4e46 |
| identifier_str_mv | 10.1371/journal.pone.0310925.t002 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/28118136 |
| publishDate | 2024 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | Multi-class segmentation performances of Mask R-CNN algorithms on a test dataset.Dennis Dennis (20490126)Siriwan Suebnukarn (13360640)Sothana Vicharueang (13360649)Wasit Limprasert (13360637)MedicineScience PolicyBiological Sciences not elsewhere classifiedthammasat university hospitalsurgical endodontic treatmentindependent 120 images90 &# 821189 &# 821185 &# 821181 &# 821172 &# 8211predict class labelperiapical radiographic imagesbased segmentation model94 ), 085 ), 0preoperative radiographic imagesmean average precisionendodontists significantly improved88 &# 821183 &# 821195 ), respectivelycnn prediction modelprediction metricsperiapical radiographsmodel trainingci 0predict nonyear followxlink ">wise segmenttest setstudy aimedrecall curvepredicting outcomesobtained retrospectivelymask regionmask rgeneral practitionersdeep learning1200 teeth<p>Multi-class segmentation performances of Mask R-CNN algorithms on a test dataset.</p>2024-12-31T18:56:21ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0310925.t002https://figshare.com/articles/dataset/Multi-class_segmentation_performances_of_Mask_R-CNN_algorithms_on_a_test_dataset_/28118136CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/281181362024-12-31T18:56:21Z |
| spellingShingle | Multi-class segmentation performances of Mask R-CNN algorithms on a test dataset. Dennis Dennis (20490126) Medicine Science Policy Biological Sciences not elsewhere classified thammasat university hospital surgical endodontic treatment independent 120 images 90 &# 8211 89 &# 8211 85 &# 8211 81 &# 8211 72 &# 8211 predict class label periapical radiographic images based segmentation model 94 ), 0 85 ), 0 preoperative radiographic images mean average precision endodontists significantly improved 88 &# 8211 83 &# 8211 95 ), respectively cnn prediction model prediction metrics periapical radiographs model training ci 0 predict non year follow xlink "> wise segment test set study aimed recall curve predicting outcomes obtained retrospectively mask region mask r general practitioners deep learning 1200 teeth |
| status_str | publishedVersion |
| title | Multi-class segmentation performances of Mask R-CNN algorithms on a test dataset. |
| title_full | Multi-class segmentation performances of Mask R-CNN algorithms on a test dataset. |
| title_fullStr | Multi-class segmentation performances of Mask R-CNN algorithms on a test dataset. |
| title_full_unstemmed | Multi-class segmentation performances of Mask R-CNN algorithms on a test dataset. |
| title_short | Multi-class segmentation performances of Mask R-CNN algorithms on a test dataset. |
| title_sort | Multi-class segmentation performances of Mask R-CNN algorithms on a test dataset. |
| topic | Medicine Science Policy Biological Sciences not elsewhere classified thammasat university hospital surgical endodontic treatment independent 120 images 90 &# 8211 89 &# 8211 85 &# 8211 81 &# 8211 72 &# 8211 predict class label periapical radiographic images based segmentation model 94 ), 0 85 ), 0 preoperative radiographic images mean average precision endodontists significantly improved 88 &# 8211 83 &# 8211 95 ), respectively cnn prediction model prediction metrics periapical radiographs model training ci 0 predict non year follow xlink "> wise segment test set study aimed recall curve predicting outcomes obtained retrospectively mask region mask r general practitioners deep learning 1200 teeth |