The proposed algorithm of the outlier detection method.

<p>The proposed algorithm of the outlier detection method.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Sunil Kumar (102321) (author)
مؤلفون آخرون: Sudeep Varshney (21453384) (author), Usha Jain (21453387) (author), Prashant Johri (21453390) (author), Abdulaziz S. Almazyad (21453393) (author), Ali Wagdy Mohamed (21453396) (author), Mehdi Hosseinzadeh (8383239) (author), Mohammad Shokouhifar (20547564) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852019833763266560
author Sunil Kumar (102321)
author2 Sudeep Varshney (21453384)
Usha Jain (21453387)
Prashant Johri (21453390)
Abdulaziz S. Almazyad (21453393)
Ali Wagdy Mohamed (21453396)
Mehdi Hosseinzadeh (8383239)
Mohammad Shokouhifar (20547564)
author2_role author
author
author
author
author
author
author
author_facet Sunil Kumar (102321)
Sudeep Varshney (21453384)
Usha Jain (21453387)
Prashant Johri (21453390)
Abdulaziz S. Almazyad (21453393)
Ali Wagdy Mohamed (21453396)
Mehdi Hosseinzadeh (8383239)
Mohammad Shokouhifar (20547564)
author_role author
dc.creator.none.fl_str_mv Sunil Kumar (102321)
Sudeep Varshney (21453384)
Usha Jain (21453387)
Prashant Johri (21453390)
Abdulaziz S. Almazyad (21453393)
Ali Wagdy Mohamed (21453396)
Mehdi Hosseinzadeh (8383239)
Mohammad Shokouhifar (20547564)
dc.date.none.fl_str_mv 2025-05-30T17:41:33Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0322738.g002
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/The_proposed_algorithm_of_the_outlier_detection_method_/29200713
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biotechnology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
nearest neighbors algorithm
nearest neighbor search
nearest neighbor identification
identifying unusual patterns
gained significant attention
disrupt system modeling
53 %, outperforming
07 %, recall
rf feature selection
learning repository datasets
named eoda ),
49 %,
parameter selection
deep learning
significantly deviate
shadow features
second stage
results demonstrate
relevant attributes
rapid growth
random forest
parameter estimation
often limited
normal behavior
inaccurate results
highest z
first stage
existing techniques
eoda approach
enhanced knn
data size
data science
clustering phase
boruta method
dc.title.none.fl_str_mv The proposed algorithm of the outlier detection method.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The proposed algorithm of the outlier detection method.</p>
eu_rights_str_mv openAccess
id Manara_3adf8ea293d858d2278d97e98be0ec83
identifier_str_mv 10.1371/journal.pone.0322738.g002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29200713
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling The proposed algorithm of the outlier detection method.Sunil Kumar (102321)Sudeep Varshney (21453384)Usha Jain (21453387)Prashant Johri (21453390)Abdulaziz S. Almazyad (21453393)Ali Wagdy Mohamed (21453396)Mehdi Hosseinzadeh (8383239)Mohammad Shokouhifar (20547564)BiotechnologySpace ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiednearest neighbors algorithmnearest neighbor searchnearest neighbor identificationidentifying unusual patternsgained significant attentiondisrupt system modeling53 %, outperforming07 %, recallrf feature selectionlearning repository datasetsnamed eoda ),49 %,parameter selectiondeep learningsignificantly deviateshadow featuressecond stageresults demonstraterelevant attributesrapid growthrandom forestparameter estimationoften limitednormal behaviorinaccurate resultshighest zfirst stageexisting techniqueseoda approachenhanced knndata sizedata scienceclustering phaseboruta method<p>The proposed algorithm of the outlier detection method.</p>2025-05-30T17:41:33ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0322738.g002https://figshare.com/articles/figure/The_proposed_algorithm_of_the_outlier_detection_method_/29200713CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/292007132025-05-30T17:41:33Z
spellingShingle The proposed algorithm of the outlier detection method.
Sunil Kumar (102321)
Biotechnology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
nearest neighbors algorithm
nearest neighbor search
nearest neighbor identification
identifying unusual patterns
gained significant attention
disrupt system modeling
53 %, outperforming
07 %, recall
rf feature selection
learning repository datasets
named eoda ),
49 %,
parameter selection
deep learning
significantly deviate
shadow features
second stage
results demonstrate
relevant attributes
rapid growth
random forest
parameter estimation
often limited
normal behavior
inaccurate results
highest z
first stage
existing techniques
eoda approach
enhanced knn
data size
data science
clustering phase
boruta method
status_str publishedVersion
title The proposed algorithm of the outlier detection method.
title_full The proposed algorithm of the outlier detection method.
title_fullStr The proposed algorithm of the outlier detection method.
title_full_unstemmed The proposed algorithm of the outlier detection method.
title_short The proposed algorithm of the outlier detection method.
title_sort The proposed algorithm of the outlier detection method.
topic Biotechnology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
nearest neighbors algorithm
nearest neighbor search
nearest neighbor identification
identifying unusual patterns
gained significant attention
disrupt system modeling
53 %, outperforming
07 %, recall
rf feature selection
learning repository datasets
named eoda ),
49 %,
parameter selection
deep learning
significantly deviate
shadow features
second stage
results demonstrate
relevant attributes
rapid growth
random forest
parameter estimation
often limited
normal behavior
inaccurate results
highest z
first stage
existing techniques
eoda approach
enhanced knn
data size
data science
clustering phase
boruta method