_version_ 1852017312584957952
author Linlong Chen (22120395)
author2 Linbiao Chen (22120398)
Hongyan Wang (41596)
Jian Zhao (219525)
author2_role author
author
author
author_facet Linlong Chen (22120395)
Linbiao Chen (22120398)
Hongyan Wang (41596)
Jian Zhao (219525)
author_role author
dc.creator.none.fl_str_mv Linlong Chen (22120395)
Linbiao Chen (22120398)
Hongyan Wang (41596)
Jian Zhao (219525)
dc.date.none.fl_str_mv 2025-08-25T17:31:36Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0331095.g010
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Visualization_of_the_true_and_predicted_values_of_the_STIL-TA_model_on_the_PEMS-BAY_dataset_Horizon_12_/29981676
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Medicine
Biotechnology
Ecology
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
two key components
hour fluctuations ).
g ., rush
g ., graph
achieving significant improvements
spatiotemporal interactive learning
dynamic traffic patterns
decoupled spatiotemporal learning
term trend awareness
model effectively enhances
dynamic temporal dependencies
traffic flow predictions
term prediction accuracy
traffic flow
spatiotemporal characteristics
new model
head trend
temporal multi
temporal correlations
synchronize interactions
road networks
processed separately
numerical sequence
limited long
jointly modeling
information loss
improving long
four real
experimental results
existing models
critical role
conquer strategy
aware self
dc.title.none.fl_str_mv Visualization of the true and predicted values of the STIL-TA model on the PEMS-BAY dataset (Horizon 12).
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Visualization of the true and predicted values of the STIL-TA model on the PEMS-BAY dataset (Horizon 12).</p>
eu_rights_str_mv openAccess
id Manara_3bc83ffb2b57c94dfeaaa7d1c1ac9c19
identifier_str_mv 10.1371/journal.pone.0331095.g010
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29981676
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Visualization of the true and predicted values of the STIL-TA model on the PEMS-BAY dataset (Horizon 12).Linlong Chen (22120395)Linbiao Chen (22120398)Hongyan Wang (41596)Jian Zhao (219525)MedicineBiotechnologyEcologyInfectious DiseasesBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedtwo key componentshour fluctuations ).g ., rushg ., graphachieving significant improvementsspatiotemporal interactive learningdynamic traffic patternsdecoupled spatiotemporal learningterm trend awarenessmodel effectively enhancesdynamic temporal dependenciestraffic flow predictionsterm prediction accuracytraffic flowspatiotemporal characteristicsnew modelhead trendtemporal multitemporal correlationssynchronize interactionsroad networksprocessed separatelynumerical sequencelimited longjointly modelinginformation lossimproving longfour realexperimental resultsexisting modelscritical roleconquer strategyaware self<p>Visualization of the true and predicted values of the STIL-TA model on the PEMS-BAY dataset (Horizon 12).</p>2025-08-25T17:31:36ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0331095.g010https://figshare.com/articles/figure/Visualization_of_the_true_and_predicted_values_of_the_STIL-TA_model_on_the_PEMS-BAY_dataset_Horizon_12_/29981676CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/299816762025-08-25T17:31:36Z
spellingShingle Visualization of the true and predicted values of the STIL-TA model on the PEMS-BAY dataset (Horizon 12).
Linlong Chen (22120395)
Medicine
Biotechnology
Ecology
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
two key components
hour fluctuations ).
g ., rush
g ., graph
achieving significant improvements
spatiotemporal interactive learning
dynamic traffic patterns
decoupled spatiotemporal learning
term trend awareness
model effectively enhances
dynamic temporal dependencies
traffic flow predictions
term prediction accuracy
traffic flow
spatiotemporal characteristics
new model
head trend
temporal multi
temporal correlations
synchronize interactions
road networks
processed separately
numerical sequence
limited long
jointly modeling
information loss
improving long
four real
experimental results
existing models
critical role
conquer strategy
aware self
status_str publishedVersion
title Visualization of the true and predicted values of the STIL-TA model on the PEMS-BAY dataset (Horizon 12).
title_full Visualization of the true and predicted values of the STIL-TA model on the PEMS-BAY dataset (Horizon 12).
title_fullStr Visualization of the true and predicted values of the STIL-TA model on the PEMS-BAY dataset (Horizon 12).
title_full_unstemmed Visualization of the true and predicted values of the STIL-TA model on the PEMS-BAY dataset (Horizon 12).
title_short Visualization of the true and predicted values of the STIL-TA model on the PEMS-BAY dataset (Horizon 12).
title_sort Visualization of the true and predicted values of the STIL-TA model on the PEMS-BAY dataset (Horizon 12).
topic Medicine
Biotechnology
Ecology
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
two key components
hour fluctuations ).
g ., rush
g ., graph
achieving significant improvements
spatiotemporal interactive learning
dynamic traffic patterns
decoupled spatiotemporal learning
term trend awareness
model effectively enhances
dynamic temporal dependencies
traffic flow predictions
term prediction accuracy
traffic flow
spatiotemporal characteristics
new model
head trend
temporal multi
temporal correlations
synchronize interactions
road networks
processed separately
numerical sequence
limited long
jointly modeling
information loss
improving long
four real
experimental results
existing models
critical role
conquer strategy
aware self