Table 1_Older people and stroke: a machine learning approach to personalize the rehabilitation of gait.docx

Introduction<p>Stroke is a significant global public health challenge, ranking as the second leading cause of death after heart disease. One of the most debilitating consequences for stroke survivors is the restriction of mobility and walking, which greatly impacts their quality of life. The s...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Elvira Maranesi (8839496) (author)
مؤلفون آخرون: Federico Barbarossa (17392258) (author), Leonardo Biscetti (4283101) (author), Marco Benadduci (13239522) (author), Elisa Casoni (8839502) (author), Ilaria Barboni (17392261) (author), Fabrizia Lattanzio (365247) (author), Lorenzo Fantechi (21404813) (author), Daniela Fornarelli (21404816) (author), Enrico Paci (21404819) (author), Sara Mecozzi (21404822) (author), Manuela Sallei (21404825) (author), Mirko Giannoni (21404828) (author), Giuseppe Pelliccioni (8839514) (author), Giovanni Renato Riccardi (8839517) (author), Valentina Di Donna (8839511) (author), Roberta Bevilacqua (13014159) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852020153230819328
author Elvira Maranesi (8839496)
author2 Federico Barbarossa (17392258)
Leonardo Biscetti (4283101)
Marco Benadduci (13239522)
Elisa Casoni (8839502)
Ilaria Barboni (17392261)
Fabrizia Lattanzio (365247)
Lorenzo Fantechi (21404813)
Daniela Fornarelli (21404816)
Enrico Paci (21404819)
Sara Mecozzi (21404822)
Manuela Sallei (21404825)
Mirko Giannoni (21404828)
Giuseppe Pelliccioni (8839514)
Giovanni Renato Riccardi (8839517)
Valentina Di Donna (8839511)
Roberta Bevilacqua (13014159)
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author_facet Elvira Maranesi (8839496)
Federico Barbarossa (17392258)
Leonardo Biscetti (4283101)
Marco Benadduci (13239522)
Elisa Casoni (8839502)
Ilaria Barboni (17392261)
Fabrizia Lattanzio (365247)
Lorenzo Fantechi (21404813)
Daniela Fornarelli (21404816)
Enrico Paci (21404819)
Sara Mecozzi (21404822)
Manuela Sallei (21404825)
Mirko Giannoni (21404828)
Giuseppe Pelliccioni (8839514)
Giovanni Renato Riccardi (8839517)
Valentina Di Donna (8839511)
Roberta Bevilacqua (13014159)
author_role author
dc.creator.none.fl_str_mv Elvira Maranesi (8839496)
Federico Barbarossa (17392258)
Leonardo Biscetti (4283101)
Marco Benadduci (13239522)
Elisa Casoni (8839502)
Ilaria Barboni (17392261)
Fabrizia Lattanzio (365247)
Lorenzo Fantechi (21404813)
Daniela Fornarelli (21404816)
Enrico Paci (21404819)
Sara Mecozzi (21404822)
Manuela Sallei (21404825)
Mirko Giannoni (21404828)
Giuseppe Pelliccioni (8839514)
Giovanni Renato Riccardi (8839517)
Valentina Di Donna (8839511)
Roberta Bevilacqua (13014159)
dc.date.none.fl_str_mv 2025-05-22T05:22:34Z
dc.identifier.none.fl_str_mv 10.3389/fragi.2025.1562355.s001
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Table_1_Older_people_and_stroke_a_machine_learning_approach_to_personalize_the_rehabilitation_of_gait_docx/29124851
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Molecular Biology
artificial intelligence
gait parameters
machine learning
medical imaging
neurology
older adults
stroke
rehabilitation
dc.title.none.fl_str_mv Table 1_Older people and stroke: a machine learning approach to personalize the rehabilitation of gait.docx
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description Introduction<p>Stroke is a significant global public health challenge, ranking as the second leading cause of death after heart disease. One of the most debilitating consequences for stroke survivors is the restriction of mobility and walking, which greatly impacts their quality of life. The scientific literature extensively details the characteristics of post-stroke gait, which differs markedly from physiological walking in terms of speed, symmetry, balance control, and biomechanical parameters. This study aims to analyze the gait parameters of stroke survivors, considering the type of stroke and the affected cerebral regions, with the goal of identifying specific gait biomarkers to facilitate the design of personalized and effective rehabilitation programs.</p>Methods<p>The research focuses on 45 post-stroke patients who experienced either hemorrhagic or ischemic strokes, categorizing them based on the location of brain damage (cortical-subcortical, corona radiata, and basal ganglia). Gait analysis was conducted using the GaitRite system, measuring 39 spatio-temporal parameters.</p>Results<p>Statistical tests revealed no significant differences, but Principal Component Analysis identified a dominant structure. Machine learning (ML) algorithms—Random Forest (RF), Support Vector Machine (SVM), and k-Nearest Neighbors (KNN)—were employed for classification, with RF demonstrating superior performance in accuracy, precision, recall (all exceeding 85%), and F1 score compared to SVM and KNN. Results indicated ML models could identify stroke types based on gait variables when traditional tests could not. Notably, RF outperformed others, suggesting its efficacy in handling complex and nonlinear data relationships.</p>Discussion<p>The clinical implication emphasized a connection between gait parameters and cerebral lesion location, notably linking basal ganglia lesions to prolonged double support time. This underscores the basal ganglia’s role in motor control, sensory processing, and postural control, highlighting the importance of sensory input in post-stroke rehabilitation.</p>
eu_rights_str_mv openAccess
id Manara_3bdc8dabfd293f0f4bef3cb3e8108aac
identifier_str_mv 10.3389/fragi.2025.1562355.s001
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29124851
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Table 1_Older people and stroke: a machine learning approach to personalize the rehabilitation of gait.docxElvira Maranesi (8839496)Federico Barbarossa (17392258)Leonardo Biscetti (4283101)Marco Benadduci (13239522)Elisa Casoni (8839502)Ilaria Barboni (17392261)Fabrizia Lattanzio (365247)Lorenzo Fantechi (21404813)Daniela Fornarelli (21404816)Enrico Paci (21404819)Sara Mecozzi (21404822)Manuela Sallei (21404825)Mirko Giannoni (21404828)Giuseppe Pelliccioni (8839514)Giovanni Renato Riccardi (8839517)Valentina Di Donna (8839511)Roberta Bevilacqua (13014159)Molecular Biologyartificial intelligencegait parametersmachine learningmedical imagingneurologyolder adultsstrokerehabilitationIntroduction<p>Stroke is a significant global public health challenge, ranking as the second leading cause of death after heart disease. One of the most debilitating consequences for stroke survivors is the restriction of mobility and walking, which greatly impacts their quality of life. The scientific literature extensively details the characteristics of post-stroke gait, which differs markedly from physiological walking in terms of speed, symmetry, balance control, and biomechanical parameters. This study aims to analyze the gait parameters of stroke survivors, considering the type of stroke and the affected cerebral regions, with the goal of identifying specific gait biomarkers to facilitate the design of personalized and effective rehabilitation programs.</p>Methods<p>The research focuses on 45 post-stroke patients who experienced either hemorrhagic or ischemic strokes, categorizing them based on the location of brain damage (cortical-subcortical, corona radiata, and basal ganglia). Gait analysis was conducted using the GaitRite system, measuring 39 spatio-temporal parameters.</p>Results<p>Statistical tests revealed no significant differences, but Principal Component Analysis identified a dominant structure. Machine learning (ML) algorithms—Random Forest (RF), Support Vector Machine (SVM), and k-Nearest Neighbors (KNN)—were employed for classification, with RF demonstrating superior performance in accuracy, precision, recall (all exceeding 85%), and F1 score compared to SVM and KNN. Results indicated ML models could identify stroke types based on gait variables when traditional tests could not. Notably, RF outperformed others, suggesting its efficacy in handling complex and nonlinear data relationships.</p>Discussion<p>The clinical implication emphasized a connection between gait parameters and cerebral lesion location, notably linking basal ganglia lesions to prolonged double support time. This underscores the basal ganglia’s role in motor control, sensory processing, and postural control, highlighting the importance of sensory input in post-stroke rehabilitation.</p>2025-05-22T05:22:34ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.3389/fragi.2025.1562355.s001https://figshare.com/articles/dataset/Table_1_Older_people_and_stroke_a_machine_learning_approach_to_personalize_the_rehabilitation_of_gait_docx/29124851CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/291248512025-05-22T05:22:34Z
spellingShingle Table 1_Older people and stroke: a machine learning approach to personalize the rehabilitation of gait.docx
Elvira Maranesi (8839496)
Molecular Biology
artificial intelligence
gait parameters
machine learning
medical imaging
neurology
older adults
stroke
rehabilitation
status_str publishedVersion
title Table 1_Older people and stroke: a machine learning approach to personalize the rehabilitation of gait.docx
title_full Table 1_Older people and stroke: a machine learning approach to personalize the rehabilitation of gait.docx
title_fullStr Table 1_Older people and stroke: a machine learning approach to personalize the rehabilitation of gait.docx
title_full_unstemmed Table 1_Older people and stroke: a machine learning approach to personalize the rehabilitation of gait.docx
title_short Table 1_Older people and stroke: a machine learning approach to personalize the rehabilitation of gait.docx
title_sort Table 1_Older people and stroke: a machine learning approach to personalize the rehabilitation of gait.docx
topic Molecular Biology
artificial intelligence
gait parameters
machine learning
medical imaging
neurology
older adults
stroke
rehabilitation