Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models.

<p>This figure illustrates the convergence of the AUC-ROC metric across iterations of the hyperparameter <i>t</i> for the Logistic Regression (LR) and Multilayer Perceptron (MLP) models in the federated learning framework. The graph demonstrates how the predictive performance stabi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Roberta Moreira Wichmann (14259316) (author)
Otros Autores: Murilo Afonso Robiati Bigoto (22676715) (author), Alexandre Dias Porto Chiavegatto Filho (14259328) (author)
Publicado: 2025
Materias:
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<p>This figure illustrates the convergence of the AUC-ROC metric across iterations of the hyperparameter <i>t</i> for the Logistic Regression (LR) and Multilayer Perceptron (MLP) models in the federated learning framework. The graph demonstrates how the predictive performance stabilizes as <i>t</i> increases, with significant convergence observed around 5 iterations. This analysis highlights the importance of hyperparameter tuning to balance model performance and computational efficiency in federated learning. This figure was developed by the authors.</p> <p>(TIFF)</p>