Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models.

<p>This figure illustrates the convergence of the AUC-ROC metric across iterations of the hyperparameter <i>t</i> for the Logistic Regression (LR) and Multilayer Perceptron (MLP) models in the federated learning framework. The graph demonstrates how the predictive performance stabi...

詳細記述

保存先:
書誌詳細
第一著者: Roberta Moreira Wichmann (14259316) (author)
その他の著者: Murilo Afonso Robiati Bigoto (22676715) (author), Alexandre Dias Porto Chiavegatto Filho (14259328) (author)
出版事項: 2025
主題:
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
_version_ 1849927641234145280
author Roberta Moreira Wichmann (14259316)
author2 Murilo Afonso Robiati Bigoto (22676715)
Alexandre Dias Porto Chiavegatto Filho (14259328)
author2_role author
author
author_facet Roberta Moreira Wichmann (14259316)
Murilo Afonso Robiati Bigoto (22676715)
Alexandre Dias Porto Chiavegatto Filho (14259328)
author_role author
dc.creator.none.fl_str_mv Roberta Moreira Wichmann (14259316)
Murilo Afonso Robiati Bigoto (22676715)
Alexandre Dias Porto Chiavegatto Filho (14259328)
dc.date.none.fl_str_mv 2025-11-24T18:35:34Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1013695.s001
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Evolution_of_the_hyperparameter_i_t_i_in_relation_to_the_LR_and_MLP_models_/30697788
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cell Biology
Ecology
Cancer
Science Policy
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
via parameter aggregation
using ensemble aggregation
strong inverse correlation
maximum performance degradation
benefits requires caution
beneficial collaborative effect
>&# 916 ;</
19 mortality using
19 mortality prediction
local patient volume
statistically certain benefits
statistical significance showed
0273 ]) due
auc crossed zero
study validates fl
fl models demonstrated
performance gain (<
evaluated federated learning
div >< p
collaborative model ’
auc minus auc
local data scarcity
ci [– 0
gain ’
federated learning
local validation
universally certain
statistical advantage
6307 ])
auc across
– 0
volatile algorithm
smallest hospital
particularly evident
network (<
multicentric sample
multicenter sample
limited institutions
layer perceptron
iid ).
high sensitivity
findings underscore
every site
enabling mechanism
despite achieving
confidence intervals
500 ).
022 patients
dc.title.none.fl_str_mv Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>This figure illustrates the convergence of the AUC-ROC metric across iterations of the hyperparameter <i>t</i> for the Logistic Regression (LR) and Multilayer Perceptron (MLP) models in the federated learning framework. The graph demonstrates how the predictive performance stabilizes as <i>t</i> increases, with significant convergence observed around 5 iterations. This analysis highlights the importance of hyperparameter tuning to balance model performance and computational efficiency in federated learning. This figure was developed by the authors.</p> <p>(TIFF)</p>
eu_rights_str_mv openAccess
id Manara_3e8e8c0bcbf10c38ba18478cdaec376f
identifier_str_mv 10.1371/journal.pcbi.1013695.s001
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30697788
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models.Roberta Moreira Wichmann (14259316)Murilo Afonso Robiati Bigoto (22676715)Alexandre Dias Porto Chiavegatto Filho (14259328)Cell BiologyEcologyCancerScience PolicyBiological Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedvia parameter aggregationusing ensemble aggregationstrong inverse correlationmaximum performance degradationbenefits requires cautionbeneficial collaborative effect>&# 916 ;</19 mortality using19 mortality predictionlocal patient volumestatistically certain benefitsstatistical significance showed0273 ]) dueauc crossed zerostudy validates flfl models demonstratedperformance gain (<evaluated federated learningdiv >< pcollaborative model ’auc minus auclocal data scarcityci [– 0gain ’federated learninglocal validationuniversally certainstatistical advantage6307 ])auc across– 0volatile algorithmsmallest hospitalparticularly evidentnetwork (<multicentric samplemulticenter samplelimited institutionslayer perceptroniid ).high sensitivityfindings underscoreevery siteenabling mechanismdespite achievingconfidence intervals500 ).022 patients<p>This figure illustrates the convergence of the AUC-ROC metric across iterations of the hyperparameter <i>t</i> for the Logistic Regression (LR) and Multilayer Perceptron (MLP) models in the federated learning framework. The graph demonstrates how the predictive performance stabilizes as <i>t</i> increases, with significant convergence observed around 5 iterations. This analysis highlights the importance of hyperparameter tuning to balance model performance and computational efficiency in federated learning. This figure was developed by the authors.</p> <p>(TIFF)</p>2025-11-24T18:35:34ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pcbi.1013695.s001https://figshare.com/articles/figure/Evolution_of_the_hyperparameter_i_t_i_in_relation_to_the_LR_and_MLP_models_/30697788CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306977882025-11-24T18:35:34Z
spellingShingle Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models.
Roberta Moreira Wichmann (14259316)
Cell Biology
Ecology
Cancer
Science Policy
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
via parameter aggregation
using ensemble aggregation
strong inverse correlation
maximum performance degradation
benefits requires caution
beneficial collaborative effect
>&# 916 ;</
19 mortality using
19 mortality prediction
local patient volume
statistically certain benefits
statistical significance showed
0273 ]) due
auc crossed zero
study validates fl
fl models demonstrated
performance gain (<
evaluated federated learning
div >< p
collaborative model ’
auc minus auc
local data scarcity
ci [– 0
gain ’
federated learning
local validation
universally certain
statistical advantage
6307 ])
auc across
– 0
volatile algorithm
smallest hospital
particularly evident
network (<
multicentric sample
multicenter sample
limited institutions
layer perceptron
iid ).
high sensitivity
findings underscore
every site
enabling mechanism
despite achieving
confidence intervals
500 ).
022 patients
status_str publishedVersion
title Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models.
title_full Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models.
title_fullStr Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models.
title_full_unstemmed Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models.
title_short Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models.
title_sort Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models.
topic Cell Biology
Ecology
Cancer
Science Policy
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
via parameter aggregation
using ensemble aggregation
strong inverse correlation
maximum performance degradation
benefits requires caution
beneficial collaborative effect
>&# 916 ;</
19 mortality using
19 mortality prediction
local patient volume
statistically certain benefits
statistical significance showed
0273 ]) due
auc crossed zero
study validates fl
fl models demonstrated
performance gain (<
evaluated federated learning
div >< p
collaborative model ’
auc minus auc
local data scarcity
ci [– 0
gain ’
federated learning
local validation
universally certain
statistical advantage
6307 ])
auc across
– 0
volatile algorithm
smallest hospital
particularly evident
network (<
multicentric sample
multicenter sample
limited institutions
layer perceptron
iid ).
high sensitivity
findings underscore
every site
enabling mechanism
despite achieving
confidence intervals
500 ).
022 patients