Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models.
<p>This figure illustrates the convergence of the AUC-ROC metric across iterations of the hyperparameter <i>t</i> for the Logistic Regression (LR) and Multilayer Perceptron (MLP) models in the federated learning framework. The graph demonstrates how the predictive performance stabi...
保存先:
| 第一著者: | |
|---|---|
| その他の著者: | , |
| 出版事項: |
2025
|
| 主題: | |
| タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
| _version_ | 1849927641234145280 |
|---|---|
| author | Roberta Moreira Wichmann (14259316) |
| author2 | Murilo Afonso Robiati Bigoto (22676715) Alexandre Dias Porto Chiavegatto Filho (14259328) |
| author2_role | author author |
| author_facet | Roberta Moreira Wichmann (14259316) Murilo Afonso Robiati Bigoto (22676715) Alexandre Dias Porto Chiavegatto Filho (14259328) |
| author_role | author |
| dc.creator.none.fl_str_mv | Roberta Moreira Wichmann (14259316) Murilo Afonso Robiati Bigoto (22676715) Alexandre Dias Porto Chiavegatto Filho (14259328) |
| dc.date.none.fl_str_mv | 2025-11-24T18:35:34Z |
| dc.identifier.none.fl_str_mv | 10.1371/journal.pcbi.1013695.s001 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/figure/Evolution_of_the_hyperparameter_i_t_i_in_relation_to_the_LR_and_MLP_models_/30697788 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Cell Biology Ecology Cancer Science Policy Biological Sciences not elsewhere classified Chemical Sciences not elsewhere classified Information Systems not elsewhere classified via parameter aggregation using ensemble aggregation strong inverse correlation maximum performance degradation benefits requires caution beneficial collaborative effect >&# 916 ;</ 19 mortality using 19 mortality prediction local patient volume statistically certain benefits statistical significance showed 0273 ]) due auc crossed zero study validates fl fl models demonstrated performance gain (< evaluated federated learning div >< p collaborative model ’ auc minus auc local data scarcity ci [– 0 gain ’ federated learning local validation universally certain statistical advantage 6307 ]) auc across – 0 volatile algorithm smallest hospital particularly evident network (< multicentric sample multicenter sample limited institutions layer perceptron iid ). high sensitivity findings underscore every site enabling mechanism despite achieving confidence intervals 500 ). 022 patients |
| dc.title.none.fl_str_mv | Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models. |
| dc.type.none.fl_str_mv | Image Figure info:eu-repo/semantics/publishedVersion image |
| description | <p>This figure illustrates the convergence of the AUC-ROC metric across iterations of the hyperparameter <i>t</i> for the Logistic Regression (LR) and Multilayer Perceptron (MLP) models in the federated learning framework. The graph demonstrates how the predictive performance stabilizes as <i>t</i> increases, with significant convergence observed around 5 iterations. This analysis highlights the importance of hyperparameter tuning to balance model performance and computational efficiency in federated learning. This figure was developed by the authors.</p> <p>(TIFF)</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_3e8e8c0bcbf10c38ba18478cdaec376f |
| identifier_str_mv | 10.1371/journal.pcbi.1013695.s001 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/30697788 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models.Roberta Moreira Wichmann (14259316)Murilo Afonso Robiati Bigoto (22676715)Alexandre Dias Porto Chiavegatto Filho (14259328)Cell BiologyEcologyCancerScience PolicyBiological Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedvia parameter aggregationusing ensemble aggregationstrong inverse correlationmaximum performance degradationbenefits requires cautionbeneficial collaborative effect>&# 916 ;</19 mortality using19 mortality predictionlocal patient volumestatistically certain benefitsstatistical significance showed0273 ]) dueauc crossed zerostudy validates flfl models demonstratedperformance gain (<evaluated federated learningdiv >< pcollaborative model ’auc minus auclocal data scarcityci [– 0gain ’federated learninglocal validationuniversally certainstatistical advantage6307 ])auc across– 0volatile algorithmsmallest hospitalparticularly evidentnetwork (<multicentric samplemulticenter samplelimited institutionslayer perceptroniid ).high sensitivityfindings underscoreevery siteenabling mechanismdespite achievingconfidence intervals500 ).022 patients<p>This figure illustrates the convergence of the AUC-ROC metric across iterations of the hyperparameter <i>t</i> for the Logistic Regression (LR) and Multilayer Perceptron (MLP) models in the federated learning framework. The graph demonstrates how the predictive performance stabilizes as <i>t</i> increases, with significant convergence observed around 5 iterations. This analysis highlights the importance of hyperparameter tuning to balance model performance and computational efficiency in federated learning. This figure was developed by the authors.</p> <p>(TIFF)</p>2025-11-24T18:35:34ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pcbi.1013695.s001https://figshare.com/articles/figure/Evolution_of_the_hyperparameter_i_t_i_in_relation_to_the_LR_and_MLP_models_/30697788CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306977882025-11-24T18:35:34Z |
| spellingShingle | Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models. Roberta Moreira Wichmann (14259316) Cell Biology Ecology Cancer Science Policy Biological Sciences not elsewhere classified Chemical Sciences not elsewhere classified Information Systems not elsewhere classified via parameter aggregation using ensemble aggregation strong inverse correlation maximum performance degradation benefits requires caution beneficial collaborative effect >&# 916 ;</ 19 mortality using 19 mortality prediction local patient volume statistically certain benefits statistical significance showed 0273 ]) due auc crossed zero study validates fl fl models demonstrated performance gain (< evaluated federated learning div >< p collaborative model ’ auc minus auc local data scarcity ci [– 0 gain ’ federated learning local validation universally certain statistical advantage 6307 ]) auc across – 0 volatile algorithm smallest hospital particularly evident network (< multicentric sample multicenter sample limited institutions layer perceptron iid ). high sensitivity findings underscore every site enabling mechanism despite achieving confidence intervals 500 ). 022 patients |
| status_str | publishedVersion |
| title | Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models. |
| title_full | Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models. |
| title_fullStr | Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models. |
| title_full_unstemmed | Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models. |
| title_short | Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models. |
| title_sort | Evolution of the hyperparameter <i>t</i> in relation to the LR and MLP models. |
| topic | Cell Biology Ecology Cancer Science Policy Biological Sciences not elsewhere classified Chemical Sciences not elsewhere classified Information Systems not elsewhere classified via parameter aggregation using ensemble aggregation strong inverse correlation maximum performance degradation benefits requires caution beneficial collaborative effect >&# 916 ;</ 19 mortality using 19 mortality prediction local patient volume statistically certain benefits statistical significance showed 0273 ]) due auc crossed zero study validates fl fl models demonstrated performance gain (< evaluated federated learning div >< p collaborative model ’ auc minus auc local data scarcity ci [– 0 gain ’ federated learning local validation universally certain statistical advantage 6307 ]) auc across – 0 volatile algorithm smallest hospital particularly evident network (< multicentric sample multicenter sample limited institutions layer perceptron iid ). high sensitivity findings underscore every site enabling mechanism despite achieving confidence intervals 500 ). 022 patients |