The structure of a speed reducer.
<div><p>Whale Optimization Algorithm (WOA) is a biologically inspired metaheuristic algorithm with a simple structure and ease of implementation. However, WOA suffers from issues such as slow convergence speed, low convergence accuracy, reduced population diversity in the later stages of...
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , |
| منشور في: |
2025
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| الملخص: | <div><p>Whale Optimization Algorithm (WOA) is a biologically inspired metaheuristic algorithm with a simple structure and ease of implementation. However, WOA suffers from issues such as slow convergence speed, low convergence accuracy, reduced population diversity in the later stages of iteration, and an imbalance between exploration and exploitation. To address these drawbacks, this paper proposed an enhanced Whale Optimization Algorithm (RWOA). RWOA utilized Good Nodes Set method to generate evenly distributed whale individuals and incorporated Hybrid Collaborative Exploration strategy, Spiral Encircling Prey strategy, and an Enhanced Spiral Updating strategy integrated with Levy flight. Additionally, an Enhanced Cauchy Mutation based on Differential Evolution was employed. Furthermore, we redesigned the update method for parameter <i>a</i> to better balance exploration and exploitation. The proposed RWOA was evaluated using 23 classical benchmark functions and the impact of six improvement strategies was analyzed. We also conducted a quantitative analysis of RWOA and compared its performance with other state-of-the-art (SOTA) metaheuristic algorithms. Finally, RWOA was applied to nine engineering design optimization problems to validate its ability to solve real-world optimization challenges. The experimental results demonstrated that RWOA outperformed other algorithms and effectively addressed the shortcomings of the canonical WOA.</p></div> |
|---|