DCGAN discriminator.
<div><p>Deep learning models for diagnostic applications require large amounts of sensitive patient data, raising privacy concerns under centralized training paradigms. We propose FedGAN, a federated learning framework for synthetic medical image generation that combines Generative Adver...
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , , , |
| منشور في: |
2025
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| الملخص: | <div><p>Deep learning models for diagnostic applications require large amounts of sensitive patient data, raising privacy concerns under centralized training paradigms. We propose FedGAN, a federated learning framework for synthetic medical image generation that combines Generative Adversarial Networks (GANs) with cross-silo federated learning. Our approach pretrains a DCGAN on abdominal CT scans and fine-tunes it collaboratively across clinical silos using diabetic retinopathy datasets. By federating the GAN’s discriminator and generator via the Federated Averaging (FedAvg) algorithm, FedGAN generates high-quality synthetic retinal images while complying with HIPAA and GDPR. Experiments demonstrate that FedGAN achieves a realism score of 0.43 (measured by a centralized discriminator). This work bridges data scarcity and privacy challenges in medical AI, enabling secure collaboration across institutions.</p></div> |
|---|