DCGAN discriminator.

<div><p>Deep learning models for diagnostic applications require large amounts of sensitive patient data, raising privacy concerns under centralized training paradigms. We propose FedGAN, a federated learning framework for synthetic medical image generation that combines Generative Adver...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Hassan Kamran (21782056) (author)
مؤلفون آخرون: Syed Jawad Hussain (18106616) (author), Sohaib Latif (20314613) (author), Imtiaz Ali Soomro (21609078) (author), Mrim M. Alnfiai (19226195) (author), Nouf Nawar Alotaibi (21782059) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:<div><p>Deep learning models for diagnostic applications require large amounts of sensitive patient data, raising privacy concerns under centralized training paradigms. We propose FedGAN, a federated learning framework for synthetic medical image generation that combines Generative Adversarial Networks (GANs) with cross-silo federated learning. Our approach pretrains a DCGAN on abdominal CT scans and fine-tunes it collaboratively across clinical silos using diabetic retinopathy datasets. By federating the GAN’s discriminator and generator via the Federated Averaging (FedAvg) algorithm, FedGAN generates high-quality synthetic retinal images while complying with HIPAA and GDPR. Experiments demonstrate that FedGAN achieves a realism score of 0.43 (measured by a centralized discriminator). This work bridges data scarcity and privacy challenges in medical AI, enabling secure collaboration across institutions.</p></div>