Class-wise allocation of images in the FishSpecies Dataset.

<p>Class-wise allocation of images in the FishSpecies Dataset.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Ebru Ergün (21395498) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852020205132185600
author Ebru Ergün (21395498)
author_facet Ebru Ergün (21395498)
author_role author
dc.creator.none.fl_str_mv Ebru Ergün (21395498)
dc.date.none.fl_str_mv 2025-05-20T17:54:13Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0322711.t004
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Class-wise_allocation_of_images_in_the_FishSpecies_Dataset_/29112950
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Ecology
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
matthews correlation coefficient
hierarchical structure enhances
edge architecture known
confusion matrix metrics
computer vision tasks
224 224 pixels
deep learning models
ca ), f1
global seafood trade
div >< p
optimizing market efficiency
class fishspecies dataset
improving food safety
class smallfishbd dataset
food safety
fishspecies dataset
market efficiency
transfer learning
seafood industry
improving sustainability
global features
fish dataset
class bd
work offers
unique ability
tensor format
swinfishnet ),
swin transformer
significant contributions
results underscore
research settings
novel methodology
model ’
innovative approach
image processing
fish market
ensuring sustainability
domestic economies
crucial industry
cohen ’
broad applications
based classification
based approach
artificial intelligence
applied using
adamw algorithm
dc.title.none.fl_str_mv Class-wise allocation of images in the FishSpecies Dataset.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Class-wise allocation of images in the FishSpecies Dataset.</p>
eu_rights_str_mv openAccess
id Manara_44edc3d81da7e44bdc8a05e8a749174a
identifier_str_mv 10.1371/journal.pone.0322711.t004
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29112950
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Class-wise allocation of images in the FishSpecies Dataset.Ebru Ergün (21395498)EcologySpace ScienceEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedmatthews correlation coefficienthierarchical structure enhancesedge architecture knownconfusion matrix metricscomputer vision tasks224 224 pixelsdeep learning modelsca ), f1global seafood tradediv >< poptimizing market efficiencyclass fishspecies datasetimproving food safetyclass smallfishbd datasetfood safetyfishspecies datasetmarket efficiencytransfer learningseafood industryimproving sustainabilityglobal featuresfish datasetclass bdwork offersunique abilitytensor formatswinfishnet ),swin transformersignificant contributionsresults underscoreresearch settingsnovel methodologymodel ’innovative approachimage processingfish marketensuring sustainabilitydomestic economiescrucial industrycohen ’broad applicationsbased classificationbased approachartificial intelligenceapplied usingadamw algorithm<p>Class-wise allocation of images in the FishSpecies Dataset.</p>2025-05-20T17:54:13ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0322711.t004https://figshare.com/articles/dataset/Class-wise_allocation_of_images_in_the_FishSpecies_Dataset_/29112950CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/291129502025-05-20T17:54:13Z
spellingShingle Class-wise allocation of images in the FishSpecies Dataset.
Ebru Ergün (21395498)
Ecology
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
matthews correlation coefficient
hierarchical structure enhances
edge architecture known
confusion matrix metrics
computer vision tasks
224 224 pixels
deep learning models
ca ), f1
global seafood trade
div >< p
optimizing market efficiency
class fishspecies dataset
improving food safety
class smallfishbd dataset
food safety
fishspecies dataset
market efficiency
transfer learning
seafood industry
improving sustainability
global features
fish dataset
class bd
work offers
unique ability
tensor format
swinfishnet ),
swin transformer
significant contributions
results underscore
research settings
novel methodology
model ’
innovative approach
image processing
fish market
ensuring sustainability
domestic economies
crucial industry
cohen ’
broad applications
based classification
based approach
artificial intelligence
applied using
adamw algorithm
status_str publishedVersion
title Class-wise allocation of images in the FishSpecies Dataset.
title_full Class-wise allocation of images in the FishSpecies Dataset.
title_fullStr Class-wise allocation of images in the FishSpecies Dataset.
title_full_unstemmed Class-wise allocation of images in the FishSpecies Dataset.
title_short Class-wise allocation of images in the FishSpecies Dataset.
title_sort Class-wise allocation of images in the FishSpecies Dataset.
topic Ecology
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
matthews correlation coefficient
hierarchical structure enhances
edge architecture known
confusion matrix metrics
computer vision tasks
224 224 pixels
deep learning models
ca ), f1
global seafood trade
div >< p
optimizing market efficiency
class fishspecies dataset
improving food safety
class smallfishbd dataset
food safety
fishspecies dataset
market efficiency
transfer learning
seafood industry
improving sustainability
global features
fish dataset
class bd
work offers
unique ability
tensor format
swinfishnet ),
swin transformer
significant contributions
results underscore
research settings
novel methodology
model ’
innovative approach
image processing
fish market
ensuring sustainability
domestic economies
crucial industry
cohen ’
broad applications
based classification
based approach
artificial intelligence
applied using
adamw algorithm