Raw performance metrics for the Random Forest (RF) model.

<p>The table presents the raw output from the bootstrap analysis, showing the mean, lower, and upper confidence interval bounds for the AUC of local and federated models, and the performance gain (<i>Δ</i>AUC). Similar to the preceding tables, it presents the mean AUC and 95% CIs f...

Full beskrivning

Sparad:
Bibliografiska uppgifter
Huvudupphovsman: Roberta Moreira Wichmann (14259316) (author)
Övriga upphovsmän: Murilo Afonso Robiati Bigoto (22676715) (author), Alexandre Dias Porto Chiavegatto Filho (14259328) (author)
Publicerad: 2025
Ämnen:
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!
_version_ 1849927641227853824
author Roberta Moreira Wichmann (14259316)
author2 Murilo Afonso Robiati Bigoto (22676715)
Alexandre Dias Porto Chiavegatto Filho (14259328)
author2_role author
author
author_facet Roberta Moreira Wichmann (14259316)
Murilo Afonso Robiati Bigoto (22676715)
Alexandre Dias Porto Chiavegatto Filho (14259328)
author_role author
dc.creator.none.fl_str_mv Roberta Moreira Wichmann (14259316)
Murilo Afonso Robiati Bigoto (22676715)
Alexandre Dias Porto Chiavegatto Filho (14259328)
dc.date.none.fl_str_mv 2025-11-24T18:35:37Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1013695.s004
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Raw_performance_metrics_for_the_Random_Forest_RF_model_/30697797
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cell Biology
Ecology
Cancer
Science Policy
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
via parameter aggregation
using ensemble aggregation
strong inverse correlation
maximum performance degradation
benefits requires caution
beneficial collaborative effect
>&# 916 ;</
19 mortality using
19 mortality prediction
local patient volume
statistically certain benefits
statistical significance showed
0273 ]) due
auc crossed zero
study validates fl
fl models demonstrated
performance gain (<
evaluated federated learning
div >< p
collaborative model ’
auc minus auc
local data scarcity
ci [– 0
gain ’
federated learning
local validation
universally certain
statistical advantage
6307 ])
auc across
– 0
volatile algorithm
smallest hospital
particularly evident
network (<
multicentric sample
multicenter sample
limited institutions
layer perceptron
iid ).
high sensitivity
findings underscore
every site
enabling mechanism
despite achieving
confidence intervals
500 ).
022 patients
dc.title.none.fl_str_mv Raw performance metrics for the Random Forest (RF) model.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>The table presents the raw output from the bootstrap analysis, showing the mean, lower, and upper confidence interval bounds for the AUC of local and federated models, and the performance gain (<i>Δ</i>AUC). Similar to the preceding tables, it presents the mean AUC and 95% CIs for the local and federated models at each hospital. The performance gain, measured by the <i>Δ</i>AUC and its 95% CI, is also shown, offering a detailed comparison for this ensemble-based learning method.</p> <p>(XLSX)</p>
eu_rights_str_mv openAccess
id Manara_4607e4d9ab8696498c4d000d2173e239
identifier_str_mv 10.1371/journal.pcbi.1013695.s004
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30697797
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Raw performance metrics for the Random Forest (RF) model.Roberta Moreira Wichmann (14259316)Murilo Afonso Robiati Bigoto (22676715)Alexandre Dias Porto Chiavegatto Filho (14259328)Cell BiologyEcologyCancerScience PolicyBiological Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedvia parameter aggregationusing ensemble aggregationstrong inverse correlationmaximum performance degradationbenefits requires cautionbeneficial collaborative effect>&# 916 ;</19 mortality using19 mortality predictionlocal patient volumestatistically certain benefitsstatistical significance showed0273 ]) dueauc crossed zerostudy validates flfl models demonstratedperformance gain (<evaluated federated learningdiv >< pcollaborative model ’auc minus auclocal data scarcityci [– 0gain ’federated learninglocal validationuniversally certainstatistical advantage6307 ])auc across– 0volatile algorithmsmallest hospitalparticularly evidentnetwork (<multicentric samplemulticenter samplelimited institutionslayer perceptroniid ).high sensitivityfindings underscoreevery siteenabling mechanismdespite achievingconfidence intervals500 ).022 patients<p>The table presents the raw output from the bootstrap analysis, showing the mean, lower, and upper confidence interval bounds for the AUC of local and federated models, and the performance gain (<i>Δ</i>AUC). Similar to the preceding tables, it presents the mean AUC and 95% CIs for the local and federated models at each hospital. The performance gain, measured by the <i>Δ</i>AUC and its 95% CI, is also shown, offering a detailed comparison for this ensemble-based learning method.</p> <p>(XLSX)</p>2025-11-24T18:35:37ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pcbi.1013695.s004https://figshare.com/articles/dataset/Raw_performance_metrics_for_the_Random_Forest_RF_model_/30697797CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306977972025-11-24T18:35:37Z
spellingShingle Raw performance metrics for the Random Forest (RF) model.
Roberta Moreira Wichmann (14259316)
Cell Biology
Ecology
Cancer
Science Policy
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
via parameter aggregation
using ensemble aggregation
strong inverse correlation
maximum performance degradation
benefits requires caution
beneficial collaborative effect
>&# 916 ;</
19 mortality using
19 mortality prediction
local patient volume
statistically certain benefits
statistical significance showed
0273 ]) due
auc crossed zero
study validates fl
fl models demonstrated
performance gain (<
evaluated federated learning
div >< p
collaborative model ’
auc minus auc
local data scarcity
ci [– 0
gain ’
federated learning
local validation
universally certain
statistical advantage
6307 ])
auc across
– 0
volatile algorithm
smallest hospital
particularly evident
network (<
multicentric sample
multicenter sample
limited institutions
layer perceptron
iid ).
high sensitivity
findings underscore
every site
enabling mechanism
despite achieving
confidence intervals
500 ).
022 patients
status_str publishedVersion
title Raw performance metrics for the Random Forest (RF) model.
title_full Raw performance metrics for the Random Forest (RF) model.
title_fullStr Raw performance metrics for the Random Forest (RF) model.
title_full_unstemmed Raw performance metrics for the Random Forest (RF) model.
title_short Raw performance metrics for the Random Forest (RF) model.
title_sort Raw performance metrics for the Random Forest (RF) model.
topic Cell Biology
Ecology
Cancer
Science Policy
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
via parameter aggregation
using ensemble aggregation
strong inverse correlation
maximum performance degradation
benefits requires caution
beneficial collaborative effect
>&# 916 ;</
19 mortality using
19 mortality prediction
local patient volume
statistically certain benefits
statistical significance showed
0273 ]) due
auc crossed zero
study validates fl
fl models demonstrated
performance gain (<
evaluated federated learning
div >< p
collaborative model ’
auc minus auc
local data scarcity
ci [– 0
gain ’
federated learning
local validation
universally certain
statistical advantage
6307 ])
auc across
– 0
volatile algorithm
smallest hospital
particularly evident
network (<
multicentric sample
multicenter sample
limited institutions
layer perceptron
iid ).
high sensitivity
findings underscore
every site
enabling mechanism
despite achieving
confidence intervals
500 ).
022 patients