An example of the node anchor map.
<div><p>Graphs are a representative type of fundamental data structures. They are capable of representing complex association relationships in diverse domains. For large-scale graph processing, the stream graphs have become efficient tools to process dynamically evolving graph data. When...
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , |
| منشور في: |
2025
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| الملخص: | <div><p>Graphs are a representative type of fundamental data structures. They are capable of representing complex association relationships in diverse domains. For large-scale graph processing, the stream graphs have become efficient tools to process dynamically evolving graph data. When processing stream graphs, the subgraph counting problem is a key technique, which faces significant computational challenges due to its #P-complete nature. This work introduces StreamSC, a novel framework that efficiently estimate subgraph counting results on stream graphs through two key innovations: (i) It’s the first learning-based framework to address the subgraph counting problem focused on stream graphs; and (ii) this framework addresses the challenges from dynamic changes of the data graph caused by the insertion or deletion of edges. Experiments on 5 real-word graphs show the priority of StreamSC on accuracy and efficiency.</p></div> |
|---|