Performance gains in activity flow prediction after combining spatial and functional embedding of routes.

<p>Accuracy of activity flow prediction based on FC <b>(A)</b>, FC(SE) <b>(B)</b>, and FC(FE, SE) <b>(</b><b>C</b><b>)</b> for different datasets. Accuracy of activity flow prediction based on SPL <b>(D)</b>, SPL<sub>...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Zhengdong Wang (35299) (author)
مؤلفون آخرون: Yifeixue Yang (20846103) (author), Ziyi Huang (2743363) (author), Wanyun Zhao (20579201) (author), Kaiqiang Su (20846106) (author), Hengcheng Zhu (17731551) (author), Dazhi Yin (110014) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:<p>Accuracy of activity flow prediction based on FC <b>(A)</b>, FC(SE) <b>(B)</b>, and FC(FE, SE) <b>(</b><b>C</b><b>)</b> for different datasets. Accuracy of activity flow prediction based on SPL <b>(D)</b>, SPL<sub>wei</sub>(SE) <b>(E)</b>, and SPL<sub>wei</sub>(FE, SE) <b>(</b><b>F</b><b>)</b> for different datasets. Accuracy of activity flow prediction based on SPL <b>(G)</b>, SPL<sub>bin</sub>(SE) <b>(H)</b>, and SPL<sub>bin</sub>(FE, SE) <b>(</b><b>I</b><b>)</b> for different datasets. Statistical significance was identified based on the area under the curve (AUC) across all density thresholds. FC, functional connectivity; FE, functional embedding; SE, spatial embedding; SPL<sub>wei</sub>, shortest path length based on weighted network; SPL<sub>bin</sub>, shortest path length based on binary network; ns, nonsignificant. *<i>p</i> < 0.05, ***<i>p</i> < 0.001 (<i>p</i> < 0.05, Bonferroni corrected).</p>