Figure 2 from Predicting Molecular Subtype and Survival of Rhabdomyosarcoma Patients Using Deep Learning of H&E Images: A Report from the Children's Oncology Group

<p>Fusion status prediction from H&E images. <b>A,</b> Workflow for deep learning of normal tissue, FN-RMS, and FP-RMS. <b>B</b> and <b>C,</b> Representative (<b>B</b>) H&E images and (<b>C</b>) class activation maps as predic...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: David Milewski (15050643) (author)
مؤلفون آخرون: Hyun Jung (15050646) (author), G. Thomas Brown (15050649) (author), Yanling Liu (15050652) (author), Ben Somerville (15050655) (author), Curtis Lisle (15050658) (author), Marc Ladanyi (15050661) (author), Erin R. Rudzinski (15050664) (author), Hyoyoung Choo-Wosoba (15050667) (author), Donald A. Barkauskas (15050670) (author), Tammy Lo (15050673) (author), David Hall (15050676) (author), Corinne M. Linardic (15050679) (author), Jun S. Wei (14955721) (author), Hsien-Chao Chou (14955718) (author), Stephen X. Skapek (15050682) (author), Rajkumar Venkatramani (15050685) (author), Peter K. Bode (15050688) (author), Seth M. Steinberg (15043179) (author), George Zaki (15050691) (author), Igor B. Kuznetsov (15050694) (author), Douglas S. Hawkins (15050697) (author), Jack F. Shern (14938001) (author), Jack Collins (15050700) (author), Javed Khan (15046967) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:<p>Fusion status prediction from H&E images. <b>A,</b> Workflow for deep learning of normal tissue, FN-RMS, and FP-RMS. <b>B</b> and <b>C,</b> Representative (<b>B</b>) H&E images and (<b>C</b>) class activation maps as predicted by the trained model. <b>D,</b> Confusion matrix for predictions on a test dataset. Micro F1, Macro F1, and Matthew's correlation coefficient shown below. <b>E,</b> Performance statistics for FP-RMS and FN-RMS prediction. Note: Normal tissues (<i>n</i> = 15) were classified with 100% sensitivity and 100% specificity and are included in performance metric calculations. <b>F,</b> Average ROC curve for FP-RMS vs. FN-RMS vs. normal predictions using holdout test data. <b>G,</b> Workflow for testing the trained algorithm against an independent RMS TMA dataset. <b>H,</b> Confusion matrix for predictions on a test dataset. Micro F1, Macro F1, and Matthew's correlation coefficient shown below. <b>I,</b> Performance statistics for FP-RMS and FN-RMS predictions on an independent dataset. <b>J,</b> Average ROC curve for FP-RMS vs. FN-RMS using an independent RMS tissue dataset.</p>