The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).
<p>The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).</p>
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , , , , , |
| منشور في: |
2024
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| _version_ | 1852024101414109184 |
|---|---|
| author | Muhammad Yasir (3555896) |
| author2 | Jinyoung Park (134860) Eun-Taek Han (620126) Jin-Hee Han (1314552) Won Sun Park (14905755) Mubashir Hassan (614591) Andrzej Kloczkowski (612861) Wanjoo Chun (6752006) |
| author2_role | author author author author author author author |
| author_facet | Muhammad Yasir (3555896) Jinyoung Park (134860) Eun-Taek Han (620126) Jin-Hee Han (1314552) Won Sun Park (14905755) Mubashir Hassan (614591) Andrzej Kloczkowski (612861) Wanjoo Chun (6752006) |
| author_role | author |
| dc.creator.none.fl_str_mv | Muhammad Yasir (3555896) Jinyoung Park (134860) Eun-Taek Han (620126) Jin-Hee Han (1314552) Won Sun Park (14905755) Mubashir Hassan (614591) Andrzej Kloczkowski (612861) Wanjoo Chun (6752006) |
| dc.date.none.fl_str_mv | 2024-12-27T18:23:54Z |
| dc.identifier.none.fl_str_mv | 10.1371/journal.pone.0315245.g004 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/figure/The_AUC-ROC_curve_of_5-fold_cross-validation_of_the_training_dataset_A_and_the_confusion_matrix_entries_for_the_training_validation_and_test_datasets_B_/28100759 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Biochemistry Cell Biology Pharmacology Biotechnology Cancer Biological Sciences not elsewhere classified Chemical Sciences not elsewhere classified Information Systems not elsewhere classified tnf -&# 945 active soluble form 7 cell confirmed predictive model based learning model followed graphconvmol model within molecular dynamics simulation extracted molecular features reference tace inhibitor key tace residues deep learning models tace inhibitory potential potential tace inhibitor decoy compounds specific trained model repurposing potential molecular docking tace ). specific targets integrated deep xlink "> using rdkit using bms therapeutic intervention subsequently used rheumatoid arthritis raw 264 promising target inflammatory response inflammatory mediators increasing utilization holds promise highly efficient e datasets e database drug repositioning deepchem framework crucial role converting pro converting enzyme computational results cheminformatics toolkit biological evaluation approved drugs approved drug also known |
| dc.title.none.fl_str_mv | The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B). |
| dc.type.none.fl_str_mv | Image Figure info:eu-repo/semantics/publishedVersion image |
| description | <p>The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_5463da2f70b81e81ce00a52b9077fb64 |
| identifier_str_mv | 10.1371/journal.pone.0315245.g004 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/28100759 |
| publishDate | 2024 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).Muhammad Yasir (3555896)Jinyoung Park (134860)Eun-Taek Han (620126)Jin-Hee Han (1314552)Won Sun Park (14905755)Mubashir Hassan (614591)Andrzej Kloczkowski (612861)Wanjoo Chun (6752006)BiochemistryCell BiologyPharmacologyBiotechnologyCancerBiological Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedtnf -&# 945active soluble form7 cell confirmedpredictive model basedlearning model followedgraphconvmol model withinmolecular dynamics simulationextracted molecular featuresreference tace inhibitorkey tace residuesdeep learning modelstace inhibitory potentialpotential tace inhibitordecoy compounds specifictrained modelrepurposing potentialmolecular dockingtace ).specific targetsintegrated deepxlink ">using rdkitusing bmstherapeutic interventionsubsequently usedrheumatoid arthritisraw 264promising targetinflammatory responseinflammatory mediatorsincreasing utilizationholds promisehighly efficiente datasetse databasedrug repositioningdeepchem frameworkcrucial roleconverting proconverting enzymecomputational resultscheminformatics toolkitbiological evaluationapproved drugsapproved drugalso known<p>The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).</p>2024-12-27T18:23:54ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0315245.g004https://figshare.com/articles/figure/The_AUC-ROC_curve_of_5-fold_cross-validation_of_the_training_dataset_A_and_the_confusion_matrix_entries_for_the_training_validation_and_test_datasets_B_/28100759CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/281007592024-12-27T18:23:54Z |
| spellingShingle | The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B). Muhammad Yasir (3555896) Biochemistry Cell Biology Pharmacology Biotechnology Cancer Biological Sciences not elsewhere classified Chemical Sciences not elsewhere classified Information Systems not elsewhere classified tnf -&# 945 active soluble form 7 cell confirmed predictive model based learning model followed graphconvmol model within molecular dynamics simulation extracted molecular features reference tace inhibitor key tace residues deep learning models tace inhibitory potential potential tace inhibitor decoy compounds specific trained model repurposing potential molecular docking tace ). specific targets integrated deep xlink "> using rdkit using bms therapeutic intervention subsequently used rheumatoid arthritis raw 264 promising target inflammatory response inflammatory mediators increasing utilization holds promise highly efficient e datasets e database drug repositioning deepchem framework crucial role converting pro converting enzyme computational results cheminformatics toolkit biological evaluation approved drugs approved drug also known |
| status_str | publishedVersion |
| title | The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B). |
| title_full | The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B). |
| title_fullStr | The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B). |
| title_full_unstemmed | The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B). |
| title_short | The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B). |
| title_sort | The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B). |
| topic | Biochemistry Cell Biology Pharmacology Biotechnology Cancer Biological Sciences not elsewhere classified Chemical Sciences not elsewhere classified Information Systems not elsewhere classified tnf -&# 945 active soluble form 7 cell confirmed predictive model based learning model followed graphconvmol model within molecular dynamics simulation extracted molecular features reference tace inhibitor key tace residues deep learning models tace inhibitory potential potential tace inhibitor decoy compounds specific trained model repurposing potential molecular docking tace ). specific targets integrated deep xlink "> using rdkit using bms therapeutic intervention subsequently used rheumatoid arthritis raw 264 promising target inflammatory response inflammatory mediators increasing utilization holds promise highly efficient e datasets e database drug repositioning deepchem framework crucial role converting pro converting enzyme computational results cheminformatics toolkit biological evaluation approved drugs approved drug also known |