The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).

<p>The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Muhammad Yasir (3555896) (author)
مؤلفون آخرون: Jinyoung Park (134860) (author), Eun-Taek Han (620126) (author), Jin-Hee Han (1314552) (author), Won Sun Park (14905755) (author), Mubashir Hassan (614591) (author), Andrzej Kloczkowski (612861) (author), Wanjoo Chun (6752006) (author)
منشور في: 2024
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852024101414109184
author Muhammad Yasir (3555896)
author2 Jinyoung Park (134860)
Eun-Taek Han (620126)
Jin-Hee Han (1314552)
Won Sun Park (14905755)
Mubashir Hassan (614591)
Andrzej Kloczkowski (612861)
Wanjoo Chun (6752006)
author2_role author
author
author
author
author
author
author
author_facet Muhammad Yasir (3555896)
Jinyoung Park (134860)
Eun-Taek Han (620126)
Jin-Hee Han (1314552)
Won Sun Park (14905755)
Mubashir Hassan (614591)
Andrzej Kloczkowski (612861)
Wanjoo Chun (6752006)
author_role author
dc.creator.none.fl_str_mv Muhammad Yasir (3555896)
Jinyoung Park (134860)
Eun-Taek Han (620126)
Jin-Hee Han (1314552)
Won Sun Park (14905755)
Mubashir Hassan (614591)
Andrzej Kloczkowski (612861)
Wanjoo Chun (6752006)
dc.date.none.fl_str_mv 2024-12-27T18:23:54Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0315245.g004
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/The_AUC-ROC_curve_of_5-fold_cross-validation_of_the_training_dataset_A_and_the_confusion_matrix_entries_for_the_training_validation_and_test_datasets_B_/28100759
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Cell Biology
Pharmacology
Biotechnology
Cancer
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
tnf -&# 945
active soluble form
7 cell confirmed
predictive model based
learning model followed
graphconvmol model within
molecular dynamics simulation
extracted molecular features
reference tace inhibitor
key tace residues
deep learning models
tace inhibitory potential
potential tace inhibitor
decoy compounds specific
trained model
repurposing potential
molecular docking
tace ).
specific targets
integrated deep
xlink ">
using rdkit
using bms
therapeutic intervention
subsequently used
rheumatoid arthritis
raw 264
promising target
inflammatory response
inflammatory mediators
increasing utilization
holds promise
highly efficient
e datasets
e database
drug repositioning
deepchem framework
crucial role
converting pro
converting enzyme
computational results
cheminformatics toolkit
biological evaluation
approved drugs
approved drug
also known
dc.title.none.fl_str_mv The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).</p>
eu_rights_str_mv openAccess
id Manara_5463da2f70b81e81ce00a52b9077fb64
identifier_str_mv 10.1371/journal.pone.0315245.g004
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28100759
publishDate 2024
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).Muhammad Yasir (3555896)Jinyoung Park (134860)Eun-Taek Han (620126)Jin-Hee Han (1314552)Won Sun Park (14905755)Mubashir Hassan (614591)Andrzej Kloczkowski (612861)Wanjoo Chun (6752006)BiochemistryCell BiologyPharmacologyBiotechnologyCancerBiological Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedtnf -&# 945active soluble form7 cell confirmedpredictive model basedlearning model followedgraphconvmol model withinmolecular dynamics simulationextracted molecular featuresreference tace inhibitorkey tace residuesdeep learning modelstace inhibitory potentialpotential tace inhibitordecoy compounds specifictrained modelrepurposing potentialmolecular dockingtace ).specific targetsintegrated deepxlink ">using rdkitusing bmstherapeutic interventionsubsequently usedrheumatoid arthritisraw 264promising targetinflammatory responseinflammatory mediatorsincreasing utilizationholds promisehighly efficiente datasetse databasedrug repositioningdeepchem frameworkcrucial roleconverting proconverting enzymecomputational resultscheminformatics toolkitbiological evaluationapproved drugsapproved drugalso known<p>The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).</p>2024-12-27T18:23:54ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0315245.g004https://figshare.com/articles/figure/The_AUC-ROC_curve_of_5-fold_cross-validation_of_the_training_dataset_A_and_the_confusion_matrix_entries_for_the_training_validation_and_test_datasets_B_/28100759CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/281007592024-12-27T18:23:54Z
spellingShingle The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).
Muhammad Yasir (3555896)
Biochemistry
Cell Biology
Pharmacology
Biotechnology
Cancer
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
tnf -&# 945
active soluble form
7 cell confirmed
predictive model based
learning model followed
graphconvmol model within
molecular dynamics simulation
extracted molecular features
reference tace inhibitor
key tace residues
deep learning models
tace inhibitory potential
potential tace inhibitor
decoy compounds specific
trained model
repurposing potential
molecular docking
tace ).
specific targets
integrated deep
xlink ">
using rdkit
using bms
therapeutic intervention
subsequently used
rheumatoid arthritis
raw 264
promising target
inflammatory response
inflammatory mediators
increasing utilization
holds promise
highly efficient
e datasets
e database
drug repositioning
deepchem framework
crucial role
converting pro
converting enzyme
computational results
cheminformatics toolkit
biological evaluation
approved drugs
approved drug
also known
status_str publishedVersion
title The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).
title_full The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).
title_fullStr The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).
title_full_unstemmed The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).
title_short The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).
title_sort The AUC-ROC curve of 5-fold cross-validation of the training dataset (A) and the confusion matrix entries for the training, validation, and test datasets (B).
topic Biochemistry
Cell Biology
Pharmacology
Biotechnology
Cancer
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
tnf -&# 945
active soluble form
7 cell confirmed
predictive model based
learning model followed
graphconvmol model within
molecular dynamics simulation
extracted molecular features
reference tace inhibitor
key tace residues
deep learning models
tace inhibitory potential
potential tace inhibitor
decoy compounds specific
trained model
repurposing potential
molecular docking
tace ).
specific targets
integrated deep
xlink ">
using rdkit
using bms
therapeutic intervention
subsequently used
rheumatoid arthritis
raw 264
promising target
inflammatory response
inflammatory mediators
increasing utilization
holds promise
highly efficient
e datasets
e database
drug repositioning
deepchem framework
crucial role
converting pro
converting enzyme
computational results
cheminformatics toolkit
biological evaluation
approved drugs
approved drug
also known