VMD-CNN-LSTM (unoptimized) and VMD-KOA-CNN-LSTM Comparison of the model prediction results with the actual power (Station site1).

<p>VMD-CNN-LSTM (unoptimized) and VMD-KOA-CNN-LSTM Comparison of the model prediction results with the actual power (Station site1).</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Jiangli Yu (4601986) (author)
مؤلفون آخرون: Gaoyi Liang (22311429) (author), Lei Wang (6656) (author), Huiyuan He (22311432) (author), Yuxin Liu (505575) (author), Qi Liu (33068) (author), Xinjie Cui (498116) (author), Hao Wang (39217) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852016264920170496
author Jiangli Yu (4601986)
author2 Gaoyi Liang (22311429)
Lei Wang (6656)
Huiyuan He (22311432)
Yuxin Liu (505575)
Qi Liu (33068)
Xinjie Cui (498116)
Hao Wang (39217)
author2_role author
author
author
author
author
author
author
author_facet Jiangli Yu (4601986)
Gaoyi Liang (22311429)
Lei Wang (6656)
Huiyuan He (22311432)
Yuxin Liu (505575)
Qi Liu (33068)
Xinjie Cui (498116)
Hao Wang (39217)
author_role author
dc.creator.none.fl_str_mv Jiangli Yu (4601986)
Gaoyi Liang (22311429)
Lei Wang (6656)
Huiyuan He (22311432)
Yuxin Liu (505575)
Qi Liu (33068)
Xinjie Cui (498116)
Hao Wang (39217)
dc.date.none.fl_str_mv 2025-09-25T17:36:41Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0329821.g020
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/VMD-CNN-LSTM_unoptimized_and_VMD-KOA-CNN-LSTM_Comparison_of_the_model_prediction_results_with_the_actual_power_Station_site1_/30211569
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biotechnology
Plant Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
mean absolute error
decomposed modal components
solid data foundation
reduce data complexity
photovoltaic power stations
photovoltaic power generation
term power prediction
traditional prediction model
lstm combined model
kepler optimization algorithm
kepler algorithm
prediction accuracy
data preprocessing
power system
power changes
lstm leverages
xlink ">
three work
subsequent predictions
study focuses
strongly proves
stable operation
significant optimization
result correction
reliable method
proposed method
innovatively introduce
innovative idea
grid connection
great significance
frequency characteristics
fluctuating problems
evaluation indicators
entire process
dynamic trends
deeply integrated
dc.title.none.fl_str_mv VMD-CNN-LSTM (unoptimized) and VMD-KOA-CNN-LSTM Comparison of the model prediction results with the actual power (Station site1).
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>VMD-CNN-LSTM (unoptimized) and VMD-KOA-CNN-LSTM Comparison of the model prediction results with the actual power (Station site1).</p>
eu_rights_str_mv openAccess
id Manara_566ea38d6784c48e65f306dea01ba01a
identifier_str_mv 10.1371/journal.pone.0329821.g020
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30211569
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling VMD-CNN-LSTM (unoptimized) and VMD-KOA-CNN-LSTM Comparison of the model prediction results with the actual power (Station site1).Jiangli Yu (4601986)Gaoyi Liang (22311429)Lei Wang (6656)Huiyuan He (22311432)Yuxin Liu (505575)Qi Liu (33068)Xinjie Cui (498116)Hao Wang (39217)BiotechnologyPlant BiologyBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedmean absolute errordecomposed modal componentssolid data foundationreduce data complexityphotovoltaic power stationsphotovoltaic power generationterm power predictiontraditional prediction modellstm combined modelkepler optimization algorithmkepler algorithmprediction accuracydata preprocessingpower systempower changeslstm leveragesxlink ">three worksubsequent predictionsstudy focusesstrongly provesstable operationsignificant optimizationresult correctionreliable methodproposed methodinnovatively introduceinnovative ideagrid connectiongreat significancefrequency characteristicsfluctuating problemsevaluation indicatorsentire processdynamic trendsdeeply integrated<p>VMD-CNN-LSTM (unoptimized) and VMD-KOA-CNN-LSTM Comparison of the model prediction results with the actual power (Station site1).</p>2025-09-25T17:36:41ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0329821.g020https://figshare.com/articles/figure/VMD-CNN-LSTM_unoptimized_and_VMD-KOA-CNN-LSTM_Comparison_of_the_model_prediction_results_with_the_actual_power_Station_site1_/30211569CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/302115692025-09-25T17:36:41Z
spellingShingle VMD-CNN-LSTM (unoptimized) and VMD-KOA-CNN-LSTM Comparison of the model prediction results with the actual power (Station site1).
Jiangli Yu (4601986)
Biotechnology
Plant Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
mean absolute error
decomposed modal components
solid data foundation
reduce data complexity
photovoltaic power stations
photovoltaic power generation
term power prediction
traditional prediction model
lstm combined model
kepler optimization algorithm
kepler algorithm
prediction accuracy
data preprocessing
power system
power changes
lstm leverages
xlink ">
three work
subsequent predictions
study focuses
strongly proves
stable operation
significant optimization
result correction
reliable method
proposed method
innovatively introduce
innovative idea
grid connection
great significance
frequency characteristics
fluctuating problems
evaluation indicators
entire process
dynamic trends
deeply integrated
status_str publishedVersion
title VMD-CNN-LSTM (unoptimized) and VMD-KOA-CNN-LSTM Comparison of the model prediction results with the actual power (Station site1).
title_full VMD-CNN-LSTM (unoptimized) and VMD-KOA-CNN-LSTM Comparison of the model prediction results with the actual power (Station site1).
title_fullStr VMD-CNN-LSTM (unoptimized) and VMD-KOA-CNN-LSTM Comparison of the model prediction results with the actual power (Station site1).
title_full_unstemmed VMD-CNN-LSTM (unoptimized) and VMD-KOA-CNN-LSTM Comparison of the model prediction results with the actual power (Station site1).
title_short VMD-CNN-LSTM (unoptimized) and VMD-KOA-CNN-LSTM Comparison of the model prediction results with the actual power (Station site1).
title_sort VMD-CNN-LSTM (unoptimized) and VMD-KOA-CNN-LSTM Comparison of the model prediction results with the actual power (Station site1).
topic Biotechnology
Plant Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
mean absolute error
decomposed modal components
solid data foundation
reduce data complexity
photovoltaic power stations
photovoltaic power generation
term power prediction
traditional prediction model
lstm combined model
kepler optimization algorithm
kepler algorithm
prediction accuracy
data preprocessing
power system
power changes
lstm leverages
xlink ">
three work
subsequent predictions
study focuses
strongly proves
stable operation
significant optimization
result correction
reliable method
proposed method
innovatively introduce
innovative idea
grid connection
great significance
frequency characteristics
fluctuating problems
evaluation indicators
entire process
dynamic trends
deeply integrated