Optimal tuning parameters and accuracy of the relative density, surface roughness and hardness models.

<p>Optimal tuning parameters and accuracy of the relative density, surface roughness and hardness models.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Fatma Alamri (20855088) (author)
مؤلفون آخرون: Imad Barsoum (17178454) (author), Shrinivas Bojanampati (20855091) (author), Maher Maalouf (6318215) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852022208547782656
author Fatma Alamri (20855088)
author2 Imad Barsoum (17178454)
Shrinivas Bojanampati (20855091)
Maher Maalouf (6318215)
author2_role author
author
author
author_facet Fatma Alamri (20855088)
Imad Barsoum (17178454)
Shrinivas Bojanampati (20855091)
Maher Maalouf (6318215)
author_role author
dc.creator.none.fl_str_mv Fatma Alamri (20855088)
Imad Barsoum (17178454)
Shrinivas Bojanampati (20855091)
Maher Maalouf (6318215)
dc.date.none.fl_str_mv 2025-03-10T17:43:53Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0316600.t006
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Optimal_tuning_parameters_and_accuracy_of_the_relative_density_surface_roughness_and_hardness_models_/28568991
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Sociology
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
xlink "> despite
mean squared error
lt ;&# 8201
gt ;&# 8201
feature importance analysis
alsi10mg samples produced
10 &# 181
support vector regression
kernel ridge regression
additive manufactured samples
g ., porosity
data including porosity
open additive manufacturing
scan speed region
predicting relative density
optimal laser power
predict part quality
additive manufacturing
scan speed
relative density
laser power
lasso regression
accurately predict
widespread adoption
various industries
study identified
study aims
still hindered
results presented
random forest
process parameters
poor quality
layer thickness
improve repeatability
hatch distance
evaluated based
current work
computational results
additional measurements
120 hv
dc.title.none.fl_str_mv Optimal tuning parameters and accuracy of the relative density, surface roughness and hardness models.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Optimal tuning parameters and accuracy of the relative density, surface roughness and hardness models.</p>
eu_rights_str_mv openAccess
id Manara_567c8cd4ef3ce85de0f99ded79880a85
identifier_str_mv 10.1371/journal.pone.0316600.t006
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28568991
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Optimal tuning parameters and accuracy of the relative density, surface roughness and hardness models.Fatma Alamri (20855088)Imad Barsoum (17178454)Shrinivas Bojanampati (20855091)Maher Maalouf (6318215)SociologySpace ScienceEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedxlink "> despitemean squared errorlt ;&# 8201gt ;&# 8201feature importance analysisalsi10mg samples produced10 &# 181support vector regressionkernel ridge regressionadditive manufactured samplesg ., porositydata including porosityopen additive manufacturingscan speed regionpredicting relative densityoptimal laser powerpredict part qualityadditive manufacturingscan speedrelative densitylaser powerlasso regressionaccurately predictwidespread adoptionvarious industriesstudy identifiedstudy aimsstill hinderedresults presentedrandom forestprocess parameterspoor qualitylayer thicknessimprove repeatabilityhatch distanceevaluated basedcurrent workcomputational resultsadditional measurements120 hv<p>Optimal tuning parameters and accuracy of the relative density, surface roughness and hardness models.</p>2025-03-10T17:43:53ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0316600.t006https://figshare.com/articles/dataset/Optimal_tuning_parameters_and_accuracy_of_the_relative_density_surface_roughness_and_hardness_models_/28568991CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/285689912025-03-10T17:43:53Z
spellingShingle Optimal tuning parameters and accuracy of the relative density, surface roughness and hardness models.
Fatma Alamri (20855088)
Sociology
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
xlink "> despite
mean squared error
lt ;&# 8201
gt ;&# 8201
feature importance analysis
alsi10mg samples produced
10 &# 181
support vector regression
kernel ridge regression
additive manufactured samples
g ., porosity
data including porosity
open additive manufacturing
scan speed region
predicting relative density
optimal laser power
predict part quality
additive manufacturing
scan speed
relative density
laser power
lasso regression
accurately predict
widespread adoption
various industries
study identified
study aims
still hindered
results presented
random forest
process parameters
poor quality
layer thickness
improve repeatability
hatch distance
evaluated based
current work
computational results
additional measurements
120 hv
status_str publishedVersion
title Optimal tuning parameters and accuracy of the relative density, surface roughness and hardness models.
title_full Optimal tuning parameters and accuracy of the relative density, surface roughness and hardness models.
title_fullStr Optimal tuning parameters and accuracy of the relative density, surface roughness and hardness models.
title_full_unstemmed Optimal tuning parameters and accuracy of the relative density, surface roughness and hardness models.
title_short Optimal tuning parameters and accuracy of the relative density, surface roughness and hardness models.
title_sort Optimal tuning parameters and accuracy of the relative density, surface roughness and hardness models.
topic Sociology
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
xlink "> despite
mean squared error
lt ;&# 8201
gt ;&# 8201
feature importance analysis
alsi10mg samples produced
10 &# 181
support vector regression
kernel ridge regression
additive manufactured samples
g ., porosity
data including porosity
open additive manufacturing
scan speed region
predicting relative density
optimal laser power
predict part quality
additive manufacturing
scan speed
relative density
laser power
lasso regression
accurately predict
widespread adoption
various industries
study identified
study aims
still hindered
results presented
random forest
process parameters
poor quality
layer thickness
improve repeatability
hatch distance
evaluated based
current work
computational results
additional measurements
120 hv