Illustration of dynamic real-time obstacle avoidance.

<p>The black dot represents the current UAV position, the red pentagram indicates the target location, the blue area denotes the core of a static obstacle, and the orange area represents the dynamic obstacle zone. The colored arrows show the planned avoidance directions in response to the pres...

Full description

Saved in:
Bibliographic Details
Main Author: Meiqing Xu (8502255) (author)
Other Authors: Chao Deng (329151) (author), Xiangyu Hu (4326106) (author), Yuxin Lu (225932) (author), Wenyan Xue (22676549) (author), Bin Zhu (182882) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849927642404356096
author Meiqing Xu (8502255)
author2 Chao Deng (329151)
Xiangyu Hu (4326106)
Yuxin Lu (225932)
Wenyan Xue (22676549)
Bin Zhu (182882)
author2_role author
author
author
author
author
author_facet Meiqing Xu (8502255)
Chao Deng (329151)
Xiangyu Hu (4326106)
Yuxin Lu (225932)
Wenyan Xue (22676549)
Bin Zhu (182882)
author_role author
dc.creator.none.fl_str_mv Meiqing Xu (8502255)
Chao Deng (329151)
Xiangyu Hu (4326106)
Yuxin Lu (225932)
Wenyan Xue (22676549)
Bin Zhu (182882)
dc.date.none.fl_str_mv 2025-11-24T18:29:58Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0336935.g003
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Illustration_of_dynamic_real-time_obstacle_avoidance_/30697190
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Microbiology
Neuroscience
Evolutionary Biology
Inorganic Chemistry
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
unmanned aerial vehicle
faster simulation time
encompassing wind speed
dynamic obstacle avoidance
deep reinforcement learning
balance global navigation
dimensional constraint model
conventional heuristic methods
heuristic search
constraint optimization
xlink ">
study proposes
simulated annealing
path redundancy
path distance
mission omissions
means algorithm
local optimization
intelligent scheduling
improved k
comparative evaluations
dc.title.none.fl_str_mv Illustration of dynamic real-time obstacle avoidance.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The black dot represents the current UAV position, the red pentagram indicates the target location, the blue area denotes the core of a static obstacle, and the orange area represents the dynamic obstacle zone. The colored arrows show the planned avoidance directions in response to the presence of dynamic obstacles.</p>
eu_rights_str_mv openAccess
id Manara_585007bdfc99f96bbc93817234b1d227
identifier_str_mv 10.1371/journal.pone.0336935.g003
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30697190
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Illustration of dynamic real-time obstacle avoidance.Meiqing Xu (8502255)Chao Deng (329151)Xiangyu Hu (4326106)Yuxin Lu (225932)Wenyan Xue (22676549)Bin Zhu (182882)MicrobiologyNeuroscienceEvolutionary BiologyInorganic ChemistryScience PolicySpace ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedunmanned aerial vehiclefaster simulation timeencompassing wind speeddynamic obstacle avoidancedeep reinforcement learningbalance global navigationdimensional constraint modelconventional heuristic methodsheuristic searchconstraint optimizationxlink ">study proposessimulated annealingpath redundancypath distancemission omissionsmeans algorithmlocal optimizationintelligent schedulingimproved kcomparative evaluations<p>The black dot represents the current UAV position, the red pentagram indicates the target location, the blue area denotes the core of a static obstacle, and the orange area represents the dynamic obstacle zone. The colored arrows show the planned avoidance directions in response to the presence of dynamic obstacles.</p>2025-11-24T18:29:58ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0336935.g003https://figshare.com/articles/figure/Illustration_of_dynamic_real-time_obstacle_avoidance_/30697190CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306971902025-11-24T18:29:58Z
spellingShingle Illustration of dynamic real-time obstacle avoidance.
Meiqing Xu (8502255)
Microbiology
Neuroscience
Evolutionary Biology
Inorganic Chemistry
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
unmanned aerial vehicle
faster simulation time
encompassing wind speed
dynamic obstacle avoidance
deep reinforcement learning
balance global navigation
dimensional constraint model
conventional heuristic methods
heuristic search
constraint optimization
xlink ">
study proposes
simulated annealing
path redundancy
path distance
mission omissions
means algorithm
local optimization
intelligent scheduling
improved k
comparative evaluations
status_str publishedVersion
title Illustration of dynamic real-time obstacle avoidance.
title_full Illustration of dynamic real-time obstacle avoidance.
title_fullStr Illustration of dynamic real-time obstacle avoidance.
title_full_unstemmed Illustration of dynamic real-time obstacle avoidance.
title_short Illustration of dynamic real-time obstacle avoidance.
title_sort Illustration of dynamic real-time obstacle avoidance.
topic Microbiology
Neuroscience
Evolutionary Biology
Inorganic Chemistry
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
unmanned aerial vehicle
faster simulation time
encompassing wind speed
dynamic obstacle avoidance
deep reinforcement learning
balance global navigation
dimensional constraint model
conventional heuristic methods
heuristic search
constraint optimization
xlink ">
study proposes
simulated annealing
path redundancy
path distance
mission omissions
means algorithm
local optimization
intelligent scheduling
improved k
comparative evaluations