Performance metrics (AUC, CA, F1, Recall, MCC) of Boosting, Stacking and Voting Ensemble Learnings with SET, ADASYN and BS balancing methods in internal test, 2011 and 2014 datasets.

<p>Note: 95% CIs (AUC: Delong method; CA/F1/Recall/MCC: 1000 bootstrap samples). Model comparisons: one-way ANOVA with Bonferroni correction; *p < 0.05 vs. Stacking-ADASYN, #p < 0.05 vs. Voting-ADASYN. Key metrics for Boosting-ADASYN: internal test AUC = 0.814 (0.782–0.846), MCC = 0.493...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Kai Wang (21246) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:<p>Note: 95% CIs (AUC: Delong method; CA/F1/Recall/MCC: 1000 bootstrap samples). Model comparisons: one-way ANOVA with Bonferroni correction; *p < 0.05 vs. Stacking-ADASYN, #p < 0.05 vs. Voting-ADASYN. Key metrics for Boosting-ADASYN: internal test AUC = 0.814 (0.782–0.846), MCC = 0.493 (0.451–0.535); 2011 external AUC = 0.772 (0.738–0.806), 2014 external AUC = 0.766 (0.732–0.800); CA = 0.754 (0.720–0.788) and MCC = 0.387 (0.345–0.429) for both 2011 and 2014.</p>