_version_ 1852019995167424512
author Yetong Fang (21433414)
author_facet Yetong Fang (21433414)
author_role author
dc.creator.none.fl_str_mv Yetong Fang (21433414)
dc.date.none.fl_str_mv 2025-05-27T18:00:46Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0322225.t004
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/The_Model_efficiency_verification_and_comparison_result_on_Taiwan_Credit_Default_Data_and_Home_Credit_Default_Risk_Data_/29159122
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Ecology
Science Policy
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
lendingclub loan dataset
integrating advanced technologies
innovative technical solution
handling time dependencies
grey wolf optimization
experimental results show
effectively capture patterns
customer historical behaviors
65 %, rmse
0 %, 21
traditional method plawiak
paper performs well
optimizing key parameters
dimensional financial data
credit score prediction
cnn performs well
51 %, 4
5 %, 68
limited prediction performance
gwo model proposed
4 %,
traditional methods
paper proposes
overall performance
key component
gwo algorithm
financial industry
financial field
xlink ">
significantly improving
risk management
hyperparameter tuning
generalization ability
fully capturing
feature extraction
existing methods
digital transformation
deep learning
combines cnns
dc.title.none.fl_str_mv The Model efficiency verification and comparison result on Taiwan Credit Default Data and Home Credit Default Risk Data.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>The Model efficiency verification and comparison result on Taiwan Credit Default Data and Home Credit Default Risk Data.</p>
eu_rights_str_mv openAccess
id Manara_5cc3bb0f6fd41b2f08e0c717cf98abbd
identifier_str_mv 10.1371/journal.pone.0322225.t004
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29159122
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling The Model efficiency verification and comparison result on Taiwan Credit Default Data and Home Credit Default Risk Data.Yetong Fang (21433414)EcologyScience PolicyBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedlendingclub loan datasetintegrating advanced technologiesinnovative technical solutionhandling time dependenciesgrey wolf optimizationexperimental results showeffectively capture patternscustomer historical behaviors65 %, rmse0 %, 21traditional method plawiakpaper performs welloptimizing key parametersdimensional financial datacredit score predictioncnn performs well51 %, 45 %, 68limited prediction performancegwo model proposed4 %,traditional methodspaper proposesoverall performancekey componentgwo algorithmfinancial industryfinancial fieldxlink ">significantly improvingrisk managementhyperparameter tuninggeneralization abilityfully capturingfeature extractionexisting methodsdigital transformationdeep learningcombines cnns<p>The Model efficiency verification and comparison result on Taiwan Credit Default Data and Home Credit Default Risk Data.</p>2025-05-27T18:00:46ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0322225.t004https://figshare.com/articles/dataset/The_Model_efficiency_verification_and_comparison_result_on_Taiwan_Credit_Default_Data_and_Home_Credit_Default_Risk_Data_/29159122CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/291591222025-05-27T18:00:46Z
spellingShingle The Model efficiency verification and comparison result on Taiwan Credit Default Data and Home Credit Default Risk Data.
Yetong Fang (21433414)
Ecology
Science Policy
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
lendingclub loan dataset
integrating advanced technologies
innovative technical solution
handling time dependencies
grey wolf optimization
experimental results show
effectively capture patterns
customer historical behaviors
65 %, rmse
0 %, 21
traditional method plawiak
paper performs well
optimizing key parameters
dimensional financial data
credit score prediction
cnn performs well
51 %, 4
5 %, 68
limited prediction performance
gwo model proposed
4 %,
traditional methods
paper proposes
overall performance
key component
gwo algorithm
financial industry
financial field
xlink ">
significantly improving
risk management
hyperparameter tuning
generalization ability
fully capturing
feature extraction
existing methods
digital transformation
deep learning
combines cnns
status_str publishedVersion
title The Model efficiency verification and comparison result on Taiwan Credit Default Data and Home Credit Default Risk Data.
title_full The Model efficiency verification and comparison result on Taiwan Credit Default Data and Home Credit Default Risk Data.
title_fullStr The Model efficiency verification and comparison result on Taiwan Credit Default Data and Home Credit Default Risk Data.
title_full_unstemmed The Model efficiency verification and comparison result on Taiwan Credit Default Data and Home Credit Default Risk Data.
title_short The Model efficiency verification and comparison result on Taiwan Credit Default Data and Home Credit Default Risk Data.
title_sort The Model efficiency verification and comparison result on Taiwan Credit Default Data and Home Credit Default Risk Data.
topic Ecology
Science Policy
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
lendingclub loan dataset
integrating advanced technologies
innovative technical solution
handling time dependencies
grey wolf optimization
experimental results show
effectively capture patterns
customer historical behaviors
65 %, rmse
0 %, 21
traditional method plawiak
paper performs well
optimizing key parameters
dimensional financial data
credit score prediction
cnn performs well
51 %, 4
5 %, 68
limited prediction performance
gwo model proposed
4 %,
traditional methods
paper proposes
overall performance
key component
gwo algorithm
financial industry
financial field
xlink ">
significantly improving
risk management
hyperparameter tuning
generalization ability
fully capturing
feature extraction
existing methods
digital transformation
deep learning
combines cnns